pacozaa commited on
Commit
ef5324d
1 Parent(s): d7681c1

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +57 -0
handler.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from unsloth.chat_templates import get_chat_template
3
+ from unsloth import FastLanguageModel
4
+ class EndpointHandler():
5
+ def __init__(self, path=""):
6
+ # Preload all the elements you are going to need at inference.
7
+ # pseudo:
8
+ # self.model= load_model(path)
9
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
10
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
11
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
12
+ model, tokenizer = FastLanguageModel.from_pretrained(
13
+ model_name = path, # YOUR MODEL YOU USED FOR TRAINING
14
+ max_seq_length = max_seq_length,
15
+ dtype = dtype,
16
+ load_in_4bit = load_in_4bit,
17
+ # token=hftoken
18
+ )
19
+ FastLanguageModel.for_inference(model)
20
+ self.model = model
21
+ self.tokenizer = tokenizer
22
+
23
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
24
+ """
25
+ data args:
26
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
27
+ kwargs
28
+ Return:
29
+ A :obj:`list` | `dict`: will be serialized and returned
30
+ """
31
+
32
+ # pseudo
33
+ # self.model(input)
34
+ messages = data
35
+ # tokenizer = self.tokenizer
36
+ self.tokenizer = get_chat_template(
37
+ self.tokenizer,
38
+ chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
39
+ mapping = {"role" : "from",
40
+ "content" : "value",
41
+ "user" : "human",
42
+ "assistant" : "gpt"}, # ShareGPT style
43
+ map_eos_token = True, # Maps <|im_end|> to instead
44
+ )
45
+ inputs = self.tokenizer.apply_chat_template(
46
+ messages,
47
+ tokenize = True,
48
+ add_generation_prompt = True, # Must add for generation
49
+ return_tensors = "pt",
50
+ ).to("cuda")
51
+
52
+ # from transformers import TextStreamer
53
+ # text_streamer = TextStreamer(tokenizer)
54
+ # _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)
55
+ outputs = self.model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True)
56
+ # print(outputs)
57
+ return self.tokenizer.batch_decode(outputs)