pabloyesteb
commited on
Commit
•
84406f3
1
Parent(s):
15c466e
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -45.00 +/- 15.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844c12eb4f40bf002981bbd10cc366a1ca0e231dff1505aa7bfe9798c735431c
|
3 |
+
size 123167
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f979a83b5b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f979a836680>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692891620178528660,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlk5MPmP00D53c/09o+6ZP+StpL8Ekv096Ga4vkUVSj/nj/09Y3jlv8+fNb+9kv09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO2vDP2gbPr9bGoE/bCliP7OGkr/YWDE/oRz4PcxlKbzLrIu/CToSPykwtL5qyGs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACtFRE/zDmgPuIm7r1z0EE/RQULwNjeTD+kSFK/lk5MPmP00D53c/09mDUPvNBpt7z6cxG8fngdPFSsbDy3p2M9Th8yO3lT37zwQQe6D4Z/v+cf9r67ZF6/WDyUvh8sCr7cNpK8d9KnP6PumT/kraS/BJL9PYMdCrzRt7i8SrT5u3VIITzDpIg8lttdPQRF6rs5/eO8QEnWuPEzcj/Iyi4/z4wGPqgH8D5mVrK/6FoeP6ZIUr/oZri+RRVKP+eP/T3EnQe8pXq4vEYKw7tFWyQ84ueCPJbbXT3uROq7T/3jvCz82ziubg4/Y0HlvhNDYL+ozms/2HxKvw19lb1Mxac/Y3jlv8+fNb+9kv09zrQJvJnZubxglxTAE+rfwFR4oj5iKF49q/LTu6sk2rxIVXvAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[ 0.19951853 0.40811452 0.12375539]\n [ 1.2025951 -1.2865567 0.12381366]\n [-0.3601601 0.78938705 0.12380963]\n [-1.7927364 -0.70946974 0.12381504]]",
|
34 |
+
"desired_goal": "[[ 1.5267099 -0.7426057 1.0086168 ]\n [ 0.88344455 -1.1447357 0.6927619 ]\n [ 0.12114836 -0.01033921 -1.0912107 ]\n [ 0.57119805 -0.35192993 0.05756418]]",
|
35 |
+
"observation": "[[ 5.66736996e-01 3.12940955e-01 -1.16285101e-01 7.57086933e-01\n -2.17219663e+00 8.00275326e-01 -8.21420908e-01 1.99518532e-01\n 4.08114523e-01 1.23755388e-01 -8.74080509e-03 -2.23893225e-02\n -8.87774862e-03 9.61124711e-03 1.44453831e-02 5.55798672e-02\n 2.71793036e-03 -2.72614826e-02 -5.15966676e-04]\n [-9.98139322e-01 -4.80712146e-01 -8.68724525e-01 -2.89522886e-01\n -1.34933934e-01 -1.78484246e-02 1.31111038e+00 1.20259511e+00\n -1.28655672e+00 1.23813659e-01 -8.42988770e-03 -2.25485880e-02\n -7.62036908e-03 9.84393526e-03 1.66801270e-02 5.41644916e-02\n -7.14934058e-03 -2.78307069e-02 -1.02179591e-04]\n [ 9.46105063e-01 6.82781696e-01 1.31396517e-01 4.68808413e-01\n -1.39326167e+00 6.18574619e-01 -8.21421027e-01 -3.60160112e-01\n 7.89387047e-01 1.23809628e-01 -8.27736035e-03 -2.25194190e-02\n -5.95215242e-03 1.00315260e-02 1.59797110e-02 5.41644916e-02\n -7.14933034e-03 -2.78307479e-02 1.04897044e-04]\n [ 5.56376338e-01 -4.47764486e-01 -8.76023471e-01 9.21122074e-01\n -7.90967464e-01 -7.29924217e-02 1.31070852e+00 -1.79273641e+00\n -7.09469736e-01 1.23815037e-01 -8.40492360e-03 -2.26867665e-02\n -2.32173920e+00 -6.99732351e+00 3.17324281e-01 5.42377308e-02\n -6.46813726e-03 -2.66288128e-02 -3.92708015e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4HoVPgNZgD0K16M8b6EQPcWEGL4K16M8tdBuPUyYiL0K16M8BFL2vXlwiD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsLpBPcxMAD4k1wk+42UWPo5/9j2B/iA+Zc+YPWxehL3gx4c91wNZPeEyFD5LMD89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA4HoVPgNZgD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAG+hED3FhBi+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC10G49TJiIvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAABFL2vXlwiD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 0.14597654 0.06266978 0.02 ]\n [ 0.03531021 -0.14894398 0.02 ]\n [ 0.05830451 -0.06669673 0.02 ]\n [-0.12027362 0.06662077 0.02 ]]",
|
45 |
+
"desired_goal": "[[ 0.04729718 0.12529296 0.13460976]\n [ 0.14687304 0.12036048 0.15722086]\n [ 0.07461432 -0.06463322 0.0662992 ]\n [ 0.05298218 0.14472534 0.04667692]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4597654e-01\n 6.2669776e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.5310205e-02\n -1.4894398e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.8304507e-02\n -6.6696733e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2027362e-01\n 6.6620775e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqhFtT987ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhHcFY+0PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhbZjhDPXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhT82itaIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhhSP2f03dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqhi2XTmW/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh3b3wkPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhvgJb+tKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh9Q+t8u0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh+4gJTl1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiTVRtP56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiLYHoouxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiYxoysS1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiVbpV0cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqioTJQtSRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqifo5ggHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiqJ4KQaKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqioqraM72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi7tA9mpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqizaC17Y1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi+sir1dxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi7QQtjCpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjN7ONYKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjFCnHeabdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjPzj3mFKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjM6ttALRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjf/779AHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjW4nndO7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjg2hysCDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjc/H5rP/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjvyPluFYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjnAsbvPUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjy6dUbT+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjxsfaHsUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkEkuYhMbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqj7mVZ9uxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkGGvwEyMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkDFHBk7PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkVv0I1LrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkMnJkoWpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkXYsd1dPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkTnRsuWbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkmSzHCGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkddmHxjKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkoAdfb9IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqkk2BSUC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk3xXnyNGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkvTVlPJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk6DcmBvrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk2fF72L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlJMeOn2qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlARpcophdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlKxgAp8XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlI6BI4EPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlbvhIe5ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlTDuKGcndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqldc8TzundX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlZq3mV7hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlsadlNDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqlj9N34bkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqlu1VHWjHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlsKQA+6idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql++RgZ0kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql11uBMBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql/+717IDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql73DvVmSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmORFZxJedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmFB9Cu2adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmPjQRf4RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmM0W/JvHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmfqGlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmWyyD7IldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqmXSQo1DTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmhZ/0/W2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmeRAjY7JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmxX1jAi3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmpRLK3d9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqmz66STyKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqmwq7yxzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnDRNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqm6zPjXFtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnFA2qDK6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnCf/NqxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnVQM6RyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnNFaKUFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnXQztTkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnXE/0NBodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnrPiLl3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnkPcSGrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnwxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnxINd7fIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoFbCJoCddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqn+9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoLlq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoNFHSWqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqohW8AaNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoaL127nQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqomy00FbFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqopwcYIjXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqo+SYgJTmdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aa9a0d90a95e439d456f5ffe6dc9905a49ac1892d42f093184bea7037fce014
|
3 |
+
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b97412750a7b0f8ae8ffe00f92a5290aee628af9e2187d381a10149ca8f370a6
|
3 |
+
size 52926
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f979a83b5b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f979a836680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692891620178528660, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlk5MPmP00D53c/09o+6ZP+StpL8Ekv096Ga4vkUVSj/nj/09Y3jlv8+fNb+9kv09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO2vDP2gbPr9bGoE/bCliP7OGkr/YWDE/oRz4PcxlKbzLrIu/CToSPykwtL5qyGs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACtFRE/zDmgPuIm7r1z0EE/RQULwNjeTD+kSFK/lk5MPmP00D53c/09mDUPvNBpt7z6cxG8fngdPFSsbDy3p2M9Th8yO3lT37zwQQe6D4Z/v+cf9r67ZF6/WDyUvh8sCr7cNpK8d9KnP6PumT/kraS/BJL9PYMdCrzRt7i8SrT5u3VIITzDpIg8lttdPQRF6rs5/eO8QEnWuPEzcj/Iyi4/z4wGPqgH8D5mVrK/6FoeP6ZIUr/oZri+RRVKP+eP/T3EnQe8pXq4vEYKw7tFWyQ84ueCPJbbXT3uROq7T/3jvCz82ziubg4/Y0HlvhNDYL+ozms/2HxKvw19lb1Mxac/Y3jlv8+fNb+9kv09zrQJvJnZubxglxTAE+rfwFR4oj5iKF49q/LTu6sk2rxIVXvAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.19951853 0.40811452 0.12375539]\n [ 1.2025951 -1.2865567 0.12381366]\n [-0.3601601 0.78938705 0.12380963]\n [-1.7927364 -0.70946974 0.12381504]]", "desired_goal": "[[ 1.5267099 -0.7426057 1.0086168 ]\n [ 0.88344455 -1.1447357 0.6927619 ]\n [ 0.12114836 -0.01033921 -1.0912107 ]\n [ 0.57119805 -0.35192993 0.05756418]]", "observation": "[[ 5.66736996e-01 3.12940955e-01 -1.16285101e-01 7.57086933e-01\n -2.17219663e+00 8.00275326e-01 -8.21420908e-01 1.99518532e-01\n 4.08114523e-01 1.23755388e-01 -8.74080509e-03 -2.23893225e-02\n -8.87774862e-03 9.61124711e-03 1.44453831e-02 5.55798672e-02\n 2.71793036e-03 -2.72614826e-02 -5.15966676e-04]\n [-9.98139322e-01 -4.80712146e-01 -8.68724525e-01 -2.89522886e-01\n -1.34933934e-01 -1.78484246e-02 1.31111038e+00 1.20259511e+00\n -1.28655672e+00 1.23813659e-01 -8.42988770e-03 -2.25485880e-02\n -7.62036908e-03 9.84393526e-03 1.66801270e-02 5.41644916e-02\n -7.14934058e-03 -2.78307069e-02 -1.02179591e-04]\n [ 9.46105063e-01 6.82781696e-01 1.31396517e-01 4.68808413e-01\n -1.39326167e+00 6.18574619e-01 -8.21421027e-01 -3.60160112e-01\n 7.89387047e-01 1.23809628e-01 -8.27736035e-03 -2.25194190e-02\n -5.95215242e-03 1.00315260e-02 1.59797110e-02 5.41644916e-02\n -7.14933034e-03 -2.78307479e-02 1.04897044e-04]\n [ 5.56376338e-01 -4.47764486e-01 -8.76023471e-01 9.21122074e-01\n -7.90967464e-01 -7.29924217e-02 1.31070852e+00 -1.79273641e+00\n -7.09469736e-01 1.23815037e-01 -8.40492360e-03 -2.26867665e-02\n -2.32173920e+00 -6.99732351e+00 3.17324281e-01 5.42377308e-02\n -6.46813726e-03 -2.66288128e-02 -3.92708015e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4HoVPgNZgD0K16M8b6EQPcWEGL4K16M8tdBuPUyYiL0K16M8BFL2vXlwiD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsLpBPcxMAD4k1wk+42UWPo5/9j2B/iA+Zc+YPWxehL3gx4c91wNZPeEyFD5LMD89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA4HoVPgNZgD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAG+hED3FhBi+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC10G49TJiIvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAABFL2vXlwiD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.14597654 0.06266978 0.02 ]\n [ 0.03531021 -0.14894398 0.02 ]\n [ 0.05830451 -0.06669673 0.02 ]\n [-0.12027362 0.06662077 0.02 ]]", "desired_goal": "[[ 0.04729718 0.12529296 0.13460976]\n [ 0.14687304 0.12036048 0.15722086]\n [ 0.07461432 -0.06463322 0.0662992 ]\n [ 0.05298218 0.14472534 0.04667692]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.4597654e-01\n 6.2669776e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.5310205e-02\n -1.4894398e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.8304507e-02\n -6.6696733e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.2027362e-01\n 6.6620775e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CqhFtT987ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhHcFY+0PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhbZjhDPXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhT82itaIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhhSP2f03dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqhi2XTmW/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh3b3wkPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqhvgJb+tKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh9Q+t8u0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqh+4gJTl1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiTVRtP56dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiLYHoouxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiYxoysS1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiVbpV0cPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqioTJQtSRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqifo5ggHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqiqJ4KQaKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqioqraM72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi7tA9mpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqizaC17Y1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi+sir1dxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqi7QQtjCpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjN7ONYKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjFCnHeabdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjPzj3mFKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjM6ttALRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjf/779AHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjW4nndO7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjg2hysCDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjc/H5rP/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjvyPluFYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjnAsbvPUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqjy6dUbT+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqjxsfaHsUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkEkuYhMbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqj7mVZ9uxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkGGvwEyMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkDFHBk7PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkVv0I1LrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkMnJkoWpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkXYsd1dPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkTnRsuWbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkmSzHCGfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkddmHxjKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkoAdfb9IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqkk2BSUC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk3xXnyNGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqkvTVlPJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk6DcmBvrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqk2fF72L6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlJMeOn2qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlARpcophdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlKxgAp8XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlI6BI4EPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlbvhIe5ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlTDuKGcndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqldc8TzundX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlZq3mV7hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlsadlNDddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqlj9N34bkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqlu1VHWjHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqlsKQA+6idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql++RgZ0kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql11uBMBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql/+717IDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cql73DvVmSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmORFZxJedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmFB9Cu2adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmPjQRf4RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmM0W/JvHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmfqGlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmWyyD7IldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CqmXSQo1DTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmhZ/0/W2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmeRAjY7JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmxX1jAi3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqmpRLK3d9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqmz66STyKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqmwq7yxzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnDRNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqm6zPjXFtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnFA2qDK6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnCf/NqxkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnVQM6RyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnNFaKUFCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnXQztTkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnXE/0NBodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnrPiLl3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnkPcSGrTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnwxaHKwIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqnxINd7fIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoFbCJoCddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqn+9IwudxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoLlq8DjjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoNFHSWqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqohW8AaNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqoaL127nQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqomy00FbFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CqopwcYIjXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cqo+SYgJTmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (901 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-24T16:38:57.654344"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fff2106a0ce084a1c9e42cfd6c3d0ef92290cd7444803099f45f2fe6870e98c8
|
3 |
+
size 3013
|