pabloma09 commited on
Commit
2656407
·
verified ·
1 Parent(s): e2a8430

Model save

Browse files
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - blumatix_dataset
8
+ model-index:
9
+ - name: layoutlm-blumatix
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-blumatix
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the blumatix_dataset dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3906
21
+ - At Table Summary: {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8}
22
+ - Aymentinformation: {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13}
23
+ - Eader: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
24
+ - Ineitemtable: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
25
+ - Nvoicedetails: {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20}
26
+ - Ogo: {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10}
27
+ - Ontact: {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16}
28
+ - Ooter: {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10}
29
+ - Overall Precision: 0.82
30
+ - Overall Recall: 0.8454
31
+ - Overall F1: 0.8325
32
+ - Overall Accuracy: 0.8704
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 3e-05
52
+ - train_batch_size: 16
53
+ - eval_batch_size: 8
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 15
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | At Table Summary | Aymentinformation | Eader | Ineitemtable | Nvoicedetails | Ogo | Ontact | Ooter | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
63
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
64
+ | 1.88 | 1.0 | 7 | 1.5813 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.42857142857142855, 'recall': 0.23076923076923078, 'f1': 0.3, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.13333333333333333, 'recall': 0.2, 'f1': 0.16, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.23076923076923078, 'recall': 0.375, 'f1': 0.2857142857142857, 'number': 16} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | 0.2063 | 0.1340 | 0.1625 | 0.4259 |
65
+ | 1.4414 | 2.0 | 14 | 1.1408 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.4, 'recall': 0.46153846153846156, 'f1': 0.42857142857142855, 'number': 13} | {'precision': 1.0, 'recall': 0.3, 'f1': 0.4615384615384615, 'number': 10} | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 10} | {'precision': 0.52, 'recall': 0.65, 'f1': 0.5777777777777778, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.4, 'recall': 0.625, 'f1': 0.48780487804878053, 'number': 16} | {'precision': 0.625, 'recall': 0.5, 'f1': 0.5555555555555556, 'number': 10} | 0.5125 | 0.4227 | 0.4633 | 0.5833 |
66
+ | 1.144 | 3.0 | 21 | 0.8586 | {'precision': 1.0, 'recall': 0.625, 'f1': 0.7692307692307693, 'number': 8} | {'precision': 0.5714285714285714, 'recall': 0.6153846153846154, 'f1': 0.5925925925925927, 'number': 13} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 10} | {'precision': 0.7368421052631579, 'recall': 0.7, 'f1': 0.717948717948718, 'number': 20} | {'precision': 0.75, 'recall': 0.3, 'f1': 0.4285714285714285, 'number': 10} | {'precision': 0.5454545454545454, 'recall': 0.75, 'f1': 0.631578947368421, 'number': 16} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | 0.7222 | 0.6701 | 0.6952 | 0.7685 |
67
+ | 0.8948 | 4.0 | 28 | 0.6937 | {'precision': 0.8333333333333334, 'recall': 0.625, 'f1': 0.7142857142857143, 'number': 8} | {'precision': 0.6923076923076923, 'recall': 0.6923076923076923, 'f1': 0.6923076923076923, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.6, 'f1': 0.7499999999999999, 'number': 10} | {'precision': 0.7894736842105263, 'recall': 0.75, 'f1': 0.7692307692307692, 'number': 20} | {'precision': 0.5, 'recall': 0.3, 'f1': 0.37499999999999994, 'number': 10} | {'precision': 0.55, 'recall': 0.6875, 'f1': 0.6111111111111112, 'number': 16} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | 0.7253 | 0.6804 | 0.7021 | 0.7870 |
68
+ | 0.7146 | 5.0 | 35 | 0.5632 | {'precision': 0.7777777777777778, 'recall': 0.875, 'f1': 0.823529411764706, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.8947368421052632, 'recall': 0.85, 'f1': 0.8717948717948718, 'number': 20} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | 0.8229 | 0.8144 | 0.8187 | 0.8611 |
69
+ | 0.6475 | 6.0 | 42 | 0.5030 | {'precision': 0.6666666666666666, 'recall': 0.75, 'f1': 0.7058823529411765, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 10} | {'precision': 0.8421052631578947, 'recall': 0.8, 'f1': 0.8205128205128205, 'number': 20} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | 0.7979 | 0.7732 | 0.7853 | 0.8426 |
70
+ | 0.5697 | 7.0 | 49 | 0.4463 | {'precision': 0.7777777777777778, 'recall': 0.875, 'f1': 0.823529411764706, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.8947368421052632, 'recall': 0.85, 'f1': 0.8717948717948718, 'number': 20} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8211 | 0.8041 | 0.8125 | 0.8611 |
71
+ | 0.4919 | 8.0 | 56 | 0.4412 | {'precision': 0.6666666666666666, 'recall': 0.75, 'f1': 0.7058823529411765, 'number': 8} | {'precision': 0.6923076923076923, 'recall': 0.6923076923076923, 'f1': 0.6923076923076923, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8061 | 0.8144 | 0.8103 | 0.8426 |
72
+ | 0.4344 | 9.0 | 63 | 0.4189 | {'precision': 0.7, 'recall': 0.875, 'f1': 0.7777777777777777, 'number': 8} | {'precision': 0.8181818181818182, 'recall': 0.6923076923076923, 'f1': 0.7500000000000001, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8163 | 0.8247 | 0.8205 | 0.8704 |
73
+ | 0.4855 | 10.0 | 70 | 0.4099 | {'precision': 0.7272727272727273, 'recall': 1.0, 'f1': 0.8421052631578948, 'number': 8} | {'precision': 0.7272727272727273, 'recall': 0.6153846153846154, 'f1': 0.6666666666666667, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8182 | 0.8351 | 0.8265 | 0.8704 |
74
+ | 0.482 | 11.0 | 77 | 0.3974 | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.82 | 0.8454 | 0.8325 | 0.8704 |
75
+ | 0.3704 | 12.0 | 84 | 0.3928 | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8283 | 0.8454 | 0.8367 | 0.8796 |
76
+ | 0.3888 | 13.0 | 91 | 0.3838 | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.8283 | 0.8454 | 0.8367 | 0.8796 |
77
+ | 0.3754 | 14.0 | 98 | 0.3889 | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.82 | 0.8454 | 0.8325 | 0.8704 |
78
+ | 0.3666 | 15.0 | 105 | 0.3906 | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 8} | {'precision': 0.75, 'recall': 0.6923076923076923, 'f1': 0.7199999999999999, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.6363636363636364, 'recall': 0.7, 'f1': 0.6666666666666666, 'number': 10} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | 0.82 | 0.8454 | 0.8325 | 0.8704 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.38.2
84
+ - Pytorch 2.2.1+cu121
85
+ - Datasets 2.18.0
86
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1710934450.DESKTOP-HA84SVN.2308077.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e0cea6809bf87aad509280a616642ea570287acf0ecf4c1f00127a9ff2daab5
3
- size 14743
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3332f0d9b7f3ab330e3bff9ddcb938ece5ad384c170106a5ea235c1dcbc7678f
3
+ size 15793
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aabe94c9a2232d1c3906110fcee17664f971e547817514ec5cbd1d5cc1c73875
3
  size 450561288
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7921ea6f930ee1bb3fc1f676a53f63165b177a8356eae591c1e24fc09dff7617
3
  size 450561288
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff