pableitorr commited on
Commit
ef98fa3
·
1 Parent(s): 1839801

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.30 +/- 1.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **TQC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo tqc --env PandaPickAndPlace-v3 -orga pableitorr -f logs/
47
+ python -m rl_zoo3.enjoy --algo tqc --env PandaPickAndPlace-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo tqc --env PandaPickAndPlace-v3 -orga pableitorr -f logs/
53
+ python -m rl_zoo3.enjoy --algo tqc --env PandaPickAndPlace-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo tqc --env PandaPickAndPlace-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo tqc --env PandaPickAndPlace-v3 -f logs/ -orga pableitorr
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 2048),
66
+ ('buffer_size', 1000000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.95),
69
+ ('learning_rate', 0.001),
70
+ ('learning_starts', 100),
71
+ ('n_timesteps', 5000000.0),
72
+ ('normalize', True),
73
+ ('policy', 'MultiInputPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'),
75
+ ('replay_buffer_class', 'HerReplayBuffer'),
76
+ ('replay_buffer_kwargs',
77
+ "dict( goal_selection_strategy='future', n_sampled_goal=4 )"),
78
+ ('tau', 0.05),
79
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
80
+ ```
81
+
82
+ # Environment Arguments
83
+ ```python
84
+ {'render_mode': 'rgb_array'}
85
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - PandaPickAndPlace-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 3001333673
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 2048
4
+ - - buffer_size
5
+ - 1000000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.95
10
+ - - learning_rate
11
+ - 0.001
12
+ - - learning_starts
13
+ - 100
14
+ - - n_timesteps
15
+ - 5000000.0
16
+ - - normalize
17
+ - true
18
+ - - policy
19
+ - MultiInputPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[512, 512, 512], n_critics=2)
22
+ - - replay_buffer_class
23
+ - HerReplayBuffer
24
+ - - replay_buffer_kwargs
25
+ - dict( goal_selection_strategy='future', n_sampled_goal=4 )
26
+ - - tau
27
+ - 0.05
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -6.3, "std_reward": 1.5524174696260022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T16:29:13.645229"}
tqc-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e13cd95c2383021702a731f73367d2f39b53232da4d2b761cc15251b70463e0a
3
+ size 24284579
tqc-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
tqc-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccf2375533d2e93cba53d9b398ed8d6caa1ce761b79d606a6c546c0767abe98d
3
+ size 4350332
tqc-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32b356c733a94ea648097b86fdc269cef894b9efdc6d889abb6b85383a59712a
3
+ size 8869382
tqc-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x0000026FCC0B6050>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x0000026FCC0B3080>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 512,
15
+ 512,
16
+ 512
17
+ ],
18
+ "n_critics": 2,
19
+ "use_sde": false
20
+ },
21
+ "num_timesteps": 5000000,
22
+ "_total_timesteps": 5000000,
23
+ "_num_timesteps_at_start": 0,
24
+ "seed": 0,
25
+ "action_noise": null,
26
+ "start_time": 1696324610114845491,
27
+ "learning_rate": {
28
+ ":type:": "<class 'function'>",
29
+ ":serialized:": "gAWV0gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
30
+ },
31
+ "tensorboard_log": null,
32
+ "_last_obs": null,
33
+ "_last_episode_starts": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_original_obs": {
38
+ ":type:": "<class 'collections.OrderedDict'>",
39
+ ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA1+h9PUBzvz0s0WE9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAa68LPrPLvj3XBFU+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADEWWY9dEHUPXxLHT0L6wM/V4OhPpn+UT9JDRE91+h9PUBzvz0s0WE9lU/GPM1KGzxfvSO9Xt3+PvY4Hz9DvFI/PUb+Pe/MnL8/XSc+lGgOSwFLE4aUaBJ0lFKUdS4=",
40
+ "achieved_goal": "[[0.06198963 0.09348154 0.05513112]]",
41
+ "desired_goal": "[[0.13641135 0.09316196 0.20802628]]",
42
+ "observation": "[[ 0.05623795 0.10364047 0.03840207 0.5153052 0.31545517 0.8202911\n 0.03541306 0.06198963 0.09348154 0.05513112 0.02420787 0.00947828\n -0.03997552 0.49778265 0.6219629 0.82318515 0.12415741 -1.2250041\n 0.16344164]]"
43
+ },
44
+ "_episode_num": 452911,
45
+ "use_sde": false,
46
+ "sde_sample_freq": -1,
47
+ "_current_progress_remaining": 0.0,
48
+ "_stats_window_size": 100,
49
+ "ep_info_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVFw0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCIAAAAAAACMAWyUSwqMAXSUR0D2nKS/z8P4jAppc19zdWNjZXNzlIh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacpuh6By1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacqVVp9JBoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPacrEk9lmRoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacrrLSuyNoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacsR0tAcFoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPactC+rU9ZoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPactogEEDBoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPacuOUY8+1oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacu6P2f05oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQPacu+4lQdloCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacvq1NQCVoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacwVkAggZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPacwz+bVjJoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacxVEAo5RoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPacx224NI9oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPacyh5VwP1oCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPacy/Sb6P9oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPaczR4hUzdoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPaczy3b215oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac0ZiWmgtoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac1Lyz5XVoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac179FWn1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac2iNdZ7poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPac3NyNn5BoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPac35cophFoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQPac4z3Cbc5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac5U79ycVoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac52EVWS5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac6YVGkN5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac7JDArQRoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac7lbhWHVoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac8B3Sro5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac8zIlt0poCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac9ZNnGsFoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPac+KYw7DFoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPac+wOmR/5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPac/SvFFUhoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPac/uml67doCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadAU/4ZdhoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadBAJa7mNoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQPadB2sOoYNoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadChIUahpoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadDCbXpW5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadDjQu27ZoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadEKnKnvVoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQPadFKNdZ7poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadF1hb4ahoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadGk7tAs1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadHMWTHKhoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadHyahHsloCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadIT8LropoCYh1fZQoaAZHwDUAAAAAAABoB0sWaAhHQPadJ8AaNuNoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadKstSQ5poCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadLXxSYPZoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadMC8M/hVoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadMVdnkDJoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadNCQLeANoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadNoXHim5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadN7T8YQ9oCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadOXaBZp1oCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadOvnmq5toCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadPgJtzjpoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadQPcBU71oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadQ/9bX6JoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadRyVGCqZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadSOdAgPpoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadSlxOtXBoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQPadS4bYK6ZoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadTbFR51NoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadUKJKraNoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadUv4tYjloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadVVvkzXVoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadWCjIq9ZoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadWZmFrVRoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQPadXPfTCtRoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadX6nKnvVoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadYiFJxvNoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadY+PmxMZoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadZasDGLloCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadaFtHhCNoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadanu4PPNoCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadbIYsNDtoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadbkqz7dloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadcLCUHIJoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQPadckPDpC9oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPaddJ+uvEFoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPaddwLF4s5oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadeREMLF5oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPade3sAvL5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQPadfnyJ9ApoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadgEFC9h9oCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadglGI9DBoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadhMGOdXloCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQPadhx5hScdoCYh1fZQoaAZHwBQAAAAAAABoB0sGaAhHQPadiOaCtihoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadi6CSRr9oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadjnSsr/doCYh1fZQoaAZHwBgAAAAAAABoB0sHaAhHQPadkIWGh25oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQPadkzPGACpoCYh1ZS4="
52
+ },
53
+ "ep_success_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
56
+ },
57
+ "_n_updates": 4999900,
58
+ "observation_space": {
59
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
60
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
61
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
62
+ "_shape": null,
63
+ "dtype": null,
64
+ "_np_random": null
65
+ },
66
+ "action_space": {
67
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
68
+ ":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
69
+ "dtype": "float32",
70
+ "bounded_below": "[ True True True True]",
71
+ "bounded_above": "[ True True True True]",
72
+ "_shape": [
73
+ 4
74
+ ],
75
+ "low": "[-1. -1. -1. -1.]",
76
+ "high": "[1. 1. 1. 1.]",
77
+ "low_repr": "-1.0",
78
+ "high_repr": "1.0",
79
+ "_np_random": "Generator(PCG64)"
80
+ },
81
+ "n_envs": 1,
82
+ "buffer_size": 1,
83
+ "batch_size": 2048,
84
+ "learning_starts": 100,
85
+ "tau": 0.05,
86
+ "gamma": 0.95,
87
+ "gradient_steps": 1,
88
+ "optimize_memory_usage": false,
89
+ "replay_buffer_class": {
90
+ ":type:": "<class 'abc.ABCMeta'>",
91
+ ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
92
+ "__module__": "stable_baselines3.her.her_replay_buffer",
93
+ "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
94
+ "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
95
+ "__init__": "<function HerReplayBuffer.__init__ at 0x0000026FCBA36200>",
96
+ "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x0000026FCBA36290>",
97
+ "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x0000026FCBA36320>",
98
+ "set_env": "<function HerReplayBuffer.set_env at 0x0000026FCBA363B0>",
99
+ "add": "<function HerReplayBuffer.add at 0x0000026FCBA36440>",
100
+ "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x0000026FCBA364D0>",
101
+ "sample": "<function HerReplayBuffer.sample at 0x0000026FCBA36560>",
102
+ "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x0000026FCBA365F0>",
103
+ "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x0000026FCBA36680>",
104
+ "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x0000026FCBA36710>",
105
+ "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x0000026FCBA367A0>",
106
+ "__abstractmethods__": "frozenset()",
107
+ "_abc_impl": "<_abc._abc_data object at 0x0000026FCBA50680>"
108
+ },
109
+ "replay_buffer_kwargs": {
110
+ "goal_selection_strategy": "future",
111
+ "n_sampled_goal": 4
112
+ },
113
+ "train_freq": {
114
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
115
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
116
+ },
117
+ "use_sde_at_warmup": false,
118
+ "target_entropy": -4.0,
119
+ "ent_coef": "auto",
120
+ "target_update_interval": 1,
121
+ "top_quantiles_to_drop_per_net": 2,
122
+ "lr_schedule": {
123
+ ":type:": "<class 'function'>",
124
+ ":serialized:": "gAWVYwQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjG5DOlxVc2Vyc1xwdG9yclxPbmVEcml2ZVxEb2N1bWVudG9zXFB5dGhvbiBTY3JpcHRzXFNCM0FUQVJJXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDnVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgcKVKUhZR0lFKUaCJoQn2UfZQoaBhoNWgljBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgnfZRoKU5oKk5oK2g9aCxOaC1oL0c/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"
125
+ },
126
+ "batch_norm_stats": [],
127
+ "batch_norm_stats_target": []
128
+ }
tqc-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425acb2ed7a5caab38e0c8cce6df79a409cf1131c1ad11e43461f01cf194d56f
3
+ size 1940
tqc-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d83009d182dd51f180a947bedf0f2777a84ed8e157cca54ad34d0bbe35182311
3
+ size 11042200
tqc-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:125593ad6553078b17bb210c9dcfe74d666c3e6cfaec35a15dbd0039f6cd8848
3
+ size 1180
tqc-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22631-SP0 10.0.22631
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.4.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c61718b50849eb3a5031aa7b23491462e1ef01e302a1986441470e5b5a52e11
3
+ size 11954710
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a51f8ef4faffaaff073431cad60f38840491bd7ad0f378c067309651295f975
3
+ size 3133