pabRomero commited on
Commit
3cdbe8c
·
verified ·
1 Parent(s): 7b5d82d

Training complete

Browse files
README.md CHANGED
@@ -1,74 +1,75 @@
1
- ---
2
- license: mit
3
- base_model: emilyalsentzer/Bio_ClinicalBERT
4
- tags:
5
- - generated_from_trainer
6
- metrics:
7
- - precision
8
- - recall
9
- - f1
10
- - accuracy
11
- model-index:
12
- - name: BioClinicalBERT-full-finetuned-ner-pablo
13
- results: []
14
- ---
15
-
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # BioClinicalBERT-full-finetuned-ner-pablo
20
-
21
- This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.1136
24
- - Precision: 0.8112
25
- - Recall: 0.8083
26
- - F1: 0.8098
27
- - Accuracy: 0.9747
28
-
29
- ## Model description
30
-
31
- More information needed
32
-
33
- ## Intended uses & limitations
34
-
35
- More information needed
36
-
37
- ## Training and evaluation data
38
-
39
- More information needed
40
-
41
- ## Training procedure
42
-
43
- ### Training hyperparameters
44
-
45
- The following hyperparameters were used during training:
46
- - learning_rate: 0.0002
47
- - train_batch_size: 16
48
- - eval_batch_size: 16
49
- - seed: 42
50
- - gradient_accumulation_steps: 4
51
- - total_train_batch_size: 64
52
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
- - lr_scheduler_type: linear
54
- - lr_scheduler_warmup_ratio: 0.05
55
- - num_epochs: 5
56
- - mixed_precision_training: Native AMP
57
-
58
- ### Training results
59
-
60
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
- | 0.2583 | 0.9990 | 781 | 0.0983 | 0.7777 | 0.7768 | 0.7773 | 0.9721 |
63
- | 0.0794 | 1.9994 | 1563 | 0.0944 | 0.7819 | 0.7879 | 0.7849 | 0.9736 |
64
- | 0.0614 | 2.9997 | 2345 | 0.0913 | 0.7861 | 0.8018 | 0.7939 | 0.9733 |
65
- | 0.0408 | 4.0 | 3127 | 0.1031 | 0.8007 | 0.8006 | 0.8006 | 0.9736 |
66
- | 0.0298 | 4.9952 | 3905 | 0.1136 | 0.8112 | 0.8083 | 0.8098 | 0.9747 |
67
-
68
-
69
- ### Framework versions
70
-
71
- - Transformers 4.44.0
72
- - Pytorch 2.4.0+cu124
73
- - Datasets 2.21.0
74
- - Tokenizers 0.19.1
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: emilyalsentzer/Bio_ClinicalBERT
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: BioClinicalBERT-full-finetuned-ner-pablo
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # BioClinicalBERT-full-finetuned-ner-pablo
21
+
22
+ This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1111
25
+ - Precision: 0.8031
26
+ - Recall: 0.7991
27
+ - F1: 0.8011
28
+ - Accuracy: 0.9748
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0002
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 64
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.05
56
+ - num_epochs: 5
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
62
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
63
+ | No log | 0.9970 | 252 | 0.0965 | 0.7524 | 0.7852 | 0.7684 | 0.9711 |
64
+ | 0.1751 | 1.9980 | 505 | 0.0858 | 0.7924 | 0.7861 | 0.7892 | 0.9747 |
65
+ | 0.1751 | 2.9990 | 758 | 0.0870 | 0.7932 | 0.7944 | 0.7938 | 0.9746 |
66
+ | 0.0409 | 4.0 | 1011 | 0.0970 | 0.8050 | 0.8026 | 0.8038 | 0.9749 |
67
+ | 0.0409 | 4.9852 | 1260 | 0.1111 | 0.8031 | 0.7991 | 0.8011 | 0.9748 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.44.2
73
+ - Pytorch 2.4.0+cu121
74
+ - Datasets 2.21.0
75
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:125fce4716d1a64e906dbc4791c547f62e2528e7c749c12c24d080cd1e9ec025
3
  size 430960500
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61fc2d66033c5b851e762725f2d6baf828ea0cf03195d2fe94408384babb7bc8
3
  size 430960500
runs/Aug23_14-19-07_ee1898c059d7/events.out.tfevents.1724422748.ee1898c059d7.1664.7 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d49d4d9eb417453e566b8c578c61ad7c4f213adc8fbbcb732dc3a71ff6eedf85
3
- size 8005
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c69e964717e2802cceebb64732f6d5b1a694f46b8398af80581974c853a781d
3
+ size 8831