pabRomero commited on
Commit
b89ae52
·
verified ·
1 Parent(s): 47bc016

Training complete

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dmis-lab/biobert-base-cased-v1.2
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: BioBERT-full-finetuned-ner-pablo
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # BioBERT-full-finetuned-ner-pablo
19
+
20
+ This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1114
23
+ - Precision: 0.7951
24
+ - Recall: 0.7809
25
+ - F1: 0.7879
26
+ - Accuracy: 0.9690
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0002
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 16
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_ratio: 0.05
54
+ - num_epochs: 3
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.1541 | 0.9998 | 2608 | 0.1456 | 0.6888 | 0.7147 | 0.7015 | 0.9601 |
62
+ | 0.1073 | 2.0 | 5217 | 0.1244 | 0.7397 | 0.7450 | 0.7423 | 0.9645 |
63
+ | 0.0744 | 2.9994 | 7824 | 0.1114 | 0.7951 | 0.7809 | 0.7879 | 0.9690 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.44.0
69
+ - Pytorch 2.4.0+cu124
70
+ - Datasets 2.21.0
71
+ - Tokenizers 0.19.1