Training complete
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,24 +43,24 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 0.0002
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
-
- gradient_accumulation_steps:
|
50 |
- total_train_batch_size: 16
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- lr_scheduler_warmup_ratio: 0.
|
54 |
- num_epochs: 3
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step
|
60 |
-
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
|
65 |
|
66 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1117
|
23 |
+
- Precision: 0.8051
|
24 |
+
- Recall: 0.7944
|
25 |
+
- F1: 0.7997
|
26 |
+
- Accuracy: 0.9702
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 0.0002
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
- total_train_batch_size: 16
|
51 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.05
|
54 |
- num_epochs: 3
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 0.135 | 0.9998 | 2351 | 0.1292 | 0.7596 | 0.7329 | 0.7460 | 0.9649 |
|
62 |
+
| 0.0863 | 2.0 | 4703 | 0.1222 | 0.8064 | 0.7631 | 0.7841 | 0.9690 |
|
63 |
+
| 0.0554 | 2.9994 | 7053 | 0.1117 | 0.8051 | 0.7944 | 0.7997 | 0.9702 |
|
64 |
|
65 |
|
66 |
### Framework versions
|