|
import json |
|
|
|
from torch import nn |
|
from transformers import BertModel |
|
|
|
with open("config.json") as json_file: |
|
config = json.load(json_file) |
|
|
|
|
|
class SentimentClassifier(nn.Module): |
|
def __init__(self, n_classes): |
|
super(SentimentClassifier, self).__init__() |
|
self.bert = BertModel.from_pretrained(config["BERT_MODEL"]) |
|
self.drop = nn.Dropout(p=0.3) |
|
self.out = nn.Linear(self.bert.config.hidden_size, n_classes) |
|
|
|
def forward(self, input_ids, attention_mask): |
|
_, pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, return_dict=False) |
|
output = self.drop(pooled_output) |
|
return self.out(output) |
|
|