|
import torch |
|
import torch.nn as nn |
|
|
|
from typing import Optional |
|
from dataclasses import dataclass |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.utils import ModelOutput |
|
|
|
from .configuration_dart2vec import Dart2VecConfig |
|
|
|
|
|
@dataclass |
|
class Dart2VecModelOutput(ModelOutput): |
|
hidden_states: torch.Tensor |
|
|
|
|
|
@dataclass |
|
class Dart2VecModelForFeatureExtractionOutput(ModelOutput): |
|
embeddings: torch.Tensor |
|
|
|
|
|
class Dart2VecEmbeddings(nn.Module): |
|
def __init__(self, config: Dart2VecConfig): |
|
super().__init__() |
|
|
|
self.tag_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
if inputs_embeds is not None: |
|
return inputs_embeds |
|
|
|
embeddings = self.tag_embeddings(input_ids) |
|
|
|
return embeddings |
|
|
|
|
|
class Dart2VecPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = Dart2VecConfig |
|
base_model_prefix = "dart2vec" |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Embedding): |
|
torch.nn.init.kaiming_uniform_(module.weight) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
class Dart2VecModel(Dart2VecPreTrainedModel): |
|
def __init__(self, config: Dart2VecConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.embeddings = Dart2VecEmbeddings(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.tag_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.tag_embeddings = value |
|
|
|
def forward( |
|
self, input_ids: torch.Tensor |
|
) -> Dart2VecModelForFeatureExtractionOutput: |
|
embeddings = self.embeddings(input_ids) |
|
|
|
return Dart2VecModelForFeatureExtractionOutput(embeddings=embeddings) |
|
|