MangaLineExtraction-hf / modeling_mle.py
p1atdev's picture
Upload 2 files
5495955 verified
raw history blame
No virus
12.5 kB
"""PyTorch MLE (Mnaga Line Extraction) model"""
from dataclasses import dataclass
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput, BaseModelOutput
from transformers.activations import ACT2FN
from .configuration_mle import MLEConfig
@dataclass
class MLEModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor | None = None
@dataclass
class MLEForAnimeLineExtractionOutput(ModelOutput):
last_hidden_state: torch.FloatTensor | None = None
pixel_values: torch.Tensor | None = None
class MLEBatchNorm(nn.Module):
def __init__(
self,
config: MLEConfig,
in_features: int,
):
super().__init__()
self.norm = nn.BatchNorm2d(in_features, eps=config.batch_norm_eps)
# the original model uses leaky_relu
if config.hidden_act == "leaky_relu":
self.act_fn = nn.LeakyReLU(negative_slope=config.negative_slope)
else:
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.norm(hidden_states)
hidden_states = self.act_fn(hidden_states)
return hidden_states
class MLEResBlock(nn.Module):
def __init__(
self,
config: MLEConfig,
in_channels: int,
out_channels: int,
stride_size: int,
):
super().__init__()
self.norm1 = MLEBatchNorm(config, in_channels)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
config.block_kernel_size,
stride=stride_size,
padding=config.block_kernel_size // 2,
)
self.norm2 = MLEBatchNorm(config, out_channels)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
config.block_kernel_size,
stride=1,
padding=config.block_kernel_size // 2,
)
if in_channels != out_channels or stride_size != 1:
self.resize = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride_size,
)
else:
self.resize = None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
output = self.norm1(hidden_states)
output = self.conv1(output)
output = self.norm2(output)
output = self.conv2(output)
if self.resize is not None:
resized_input = self.resize(hidden_states)
output += resized_input
else:
output += hidden_states
return output
class MLEEncoderLayer(nn.Module):
def __init__(
self,
config: MLEConfig,
in_features: int,
out_features: int,
num_layers: int,
stride_sizes: list[int],
):
super().__init__()
self.blocks = nn.ModuleList(
[
MLEResBlock(
config,
in_channels=in_features if i == 0 else out_features,
out_channels=out_features,
stride_size=stride_sizes[i],
)
for i in range(num_layers)
]
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for block in self.blocks:
hidden_states = block(hidden_states)
return hidden_states
class MLEEncoder(nn.Module):
def __init__(
self,
config: MLEConfig,
):
super().__init__()
self.layers = nn.ModuleList(
[
MLEEncoderLayer(
config,
in_features=(
config.in_channels
if i == 0
else config.in_channels
* config.block_patch_size
* (config.upsample_ratio ** (i - 1))
),
out_features=config.in_channels
* config.block_patch_size
* (config.upsample_ratio**i),
num_layers=num_layers,
stride_sizes=(
[
1 if i_layer < num_layers - 1 else 2
for i_layer in range(num_layers)
]
if i > 0
else [1 for _ in range(num_layers)]
),
)
for i, num_layers in enumerate(config.num_encoder_layers)
]
)
def forward(
self, hidden_states: torch.Tensor
) -> tuple[torch.Tensor, tuple[torch.Tensor, ...]]:
all_hidden_states: tuple[torch.Tensor, ...] = ()
for layer in self.layers:
hidden_states = layer(hidden_states)
all_hidden_states += (hidden_states,)
return hidden_states, all_hidden_states
class MLEUpsampleBlock(nn.Module):
def __init__(self, config: MLEConfig, in_features: int, out_features: int):
super().__init__()
self.norm = MLEBatchNorm(config, in_features=in_features)
self.conv = nn.Conv2d(
in_features,
out_features,
config.block_kernel_size,
stride=1,
padding=config.block_kernel_size // 2,
)
self.upsample = nn.Upsample(scale_factor=config.upsample_ratio)
def forward(self, hidden_states: torch.Tensor):
output = self.norm(hidden_states)
output = self.conv(output)
output = self.upsample(output)
return output
class MLEUpsampleResBlock(nn.Module):
def __init__(self, config: MLEConfig, in_features: int, out_features: int):
super().__init__()
self.upsample = MLEUpsampleBlock(
config, in_features=in_features, out_features=out_features
)
self.norm = MLEBatchNorm(config, in_features=out_features)
self.conv = nn.Conv2d(
out_features,
out_features,
config.block_kernel_size,
stride=1,
padding=config.block_kernel_size // 2,
)
if in_features != out_features:
self.resize = nn.Sequential(
nn.Conv2d(
in_features,
out_features,
kernel_size=1,
stride=1,
),
nn.Upsample(scale_factor=config.upsample_ratio),
)
else:
self.resize = None
def forward(self, hidden_states: torch.Tensor):
output = self.upsample(hidden_states)
output = self.norm(output)
output = self.conv(output)
if self.resize is not None:
output += self.resize(hidden_states)
return output
class MLEDecoderLayer(nn.Module):
def __init__(
self,
config: MLEConfig,
in_features: int,
out_features: int,
num_layers: int,
):
super().__init__()
self.blocks = nn.ModuleList(
[
(
MLEResBlock(
config,
in_channels=out_features,
out_channels=out_features,
stride_size=1,
)
if i > 0
else MLEUpsampleResBlock(
config,
in_features=in_features,
out_features=out_features,
)
)
for i in range(num_layers)
]
)
def forward(
self, hidden_states: torch.Tensor, shortcut_states: torch.Tensor
) -> torch.Tensor:
for block in self.blocks:
hidden_states = block(hidden_states)
hidden_states += shortcut_states
return hidden_states
class MLEDecoderHead(nn.Module):
def __init__(self, config: MLEConfig, num_layers: int):
super().__init__()
self.layer = MLEEncoderLayer(
config,
in_features=config.block_patch_size,
out_features=config.last_hidden_channels,
stride_sizes=[1 for _ in range(num_layers)],
num_layers=num_layers,
)
self.norm = MLEBatchNorm(config, in_features=config.last_hidden_channels)
self.conv = nn.Conv2d(
config.last_hidden_channels,
out_channels=1,
kernel_size=1,
stride=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.layer(hidden_states)
hidden_states = self.norm(hidden_states)
pixel_values = self.conv(hidden_states)
return pixel_values
class MLEDecoder(nn.Module):
def __init__(
self,
config: MLEConfig,
):
super().__init__()
encoder_output_channels = (
config.in_channels
* config.block_patch_size
* (config.upsample_ratio ** (len(config.num_encoder_layers) - 1))
)
upsample_ratio = config.upsample_ratio
num_decoder_layers = config.num_decoder_layers
self.layers = nn.ModuleList(
[
(
MLEDecoderLayer(
config,
in_features=encoder_output_channels // (upsample_ratio**i),
out_features=encoder_output_channels
// (upsample_ratio ** (i + 1)),
num_layers=num_layers,
)
if i < len(num_decoder_layers) - 1
else MLEDecoderHead(
config,
num_layers=num_layers,
)
)
for i, num_layers in enumerate(num_decoder_layers)
]
)
def forward(
self,
last_hidden_states: torch.Tensor,
encoder_hidden_states: tuple[torch.Tensor, ...],
) -> torch.Tensor:
hidden_states = last_hidden_states
num_encoder_hidden_states = len(encoder_hidden_states) # 5
for i, layer in enumerate(self.layers):
if i < len(self.layers) - 1:
hidden_states = layer(
hidden_states,
# 0, 1, 2, 3, 4
# ↓ ↓ ↓ ↓ ↓
# 8, 7, 6, 5, 5
encoder_hidden_states[num_encoder_hidden_states - 2 - i],
)
else:
# decoder head
hidden_states = layer(hidden_states)
return hidden_states
class MLEPretrainedModel(PreTrainedModel):
config_class = MLEConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
class MLEModel(MLEPretrainedModel):
def __init__(self, config: MLEConfig):
super().__init__(config)
self.config = config
self.encoder = MLEEncoder(config)
self.decoder = MLEDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
encoder_output, all_hidden_states = self.encoder(pixel_values)
decoder_output = self.decoder(encoder_output, all_hidden_states)
return decoder_output
class MLEForAnimeLineExtraction(MLEPretrainedModel):
def __init__(self, config: MLEConfig):
super().__init__(config)
self.model = MLEModel(config)
def postprocess(self, output_tensor: torch.Tensor, input_shape: tuple[int, int]):
pixel_values = output_tensor[:, 0, :, :]
pixel_values = torch.clip(pixel_values, 0, 255)
pixel_values = pixel_values[:, 0 : input_shape[0], 0 : input_shape[1]]
return pixel_values
def forward(
self, pixel_values: torch.Tensor, return_dict: bool = True
) -> tuple[torch.Tensor, ...] | MLEForAnimeLineExtractionOutput:
# height, width
input_image_size = (pixel_values.shape[2], pixel_values.shape[3])
model_output = self.model(pixel_values)
if not return_dict:
return (model_output, self.postprocess(model_output, input_image_size))
else:
return MLEForAnimeLineExtractionOutput(
last_hidden_state=model_output,
pixel_values=self.postprocess(model_output, input_image_size),
)