12412fsasf / pipeline.py
p-christ's picture
Update pipeline.py
48a26a2
raw
history blame
5.44 kB
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from typing import Dict, List, Any
import itertools
class PreTrainedPipeline():
def __init__(self, path=""):
# IMPLEMENT_THIS
# Preload all the elements you are going to need at inference.
# For instance your model, processors, tokenizer that might be needed.
# This function is only called once, so do all the heavy processing I/O here"""
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
self.tokenizer = AutoTokenizer.from_pretrained(path)
def __call__(self, inputs: str):
if len(inputs) == 0: return []
inputs = " ".join(inputs.split())
sents, answers = self._extract_answers(inputs)
flat_answers = list(itertools.chain(*answers))
if len(flat_answers) == 0:
return []
qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers)
qg_inputs = [example['source_text'] for example in qg_examples]
questions = self._generate_questions(qg_inputs)
output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)]
output = self.clean_generated_QAs(output)
return output
def _extract_answers(self, context):
print("_extract_answers")
sents, inputs = self._prepare_inputs_for_ans_extraction(context)
inputs = self._tokenize(inputs, padding=True, truncation=True)
outs = self.model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
max_length=32,
)
dec = [self.tokenizer.decode(ids, skip_special_tokens=False) for ids in outs]
answers = [item.split('<sep>') for item in dec]
answers = [i[:-1] for i in answers]
return sents, answers
def _prepare_inputs_for_ans_extraction(self, text):
print("_prepare_inputs_for_ans_extraction")
sents = sent_tokenize(text)
inputs = []
for i in range(len(sents)):
source_text = "extract answers:"
for j, sent in enumerate(sents):
if i == j:
sent = "<hl> %s <hl>" % sent
source_text = "%s %s" % (source_text, sent)
source_text = source_text.strip()
if self.model_type == "t5":
source_text = source_text + " </s>"
inputs.append(source_text)
return sents, inputs
def _tokenize(self,
inputs,
padding=True,
truncation=True,
add_special_tokens=True,
max_length=512
):
inputs = self.tokenizer.batch_encode_plus(
inputs,
max_length=max_length,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding="max_length" if padding else False,
pad_to_max_length=padding,
return_tensors="pt"
)
return inputs
def _generate_questions(self, inputs):
print("_generate_questions")
inputs = self._tokenize(inputs, padding=True, truncation=True)
outs = self.model.generate(
input_ids=inputs['input_ids'].to(self.device),
attention_mask=inputs['attention_mask'].to(self.device),
max_length=32,
num_beams=4,
)
questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
return questions
def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers):
print("_prepare_inputs_for_qg_from_answers_hl")
inputs = []
for i, answer in enumerate(answers):
if len(answer) == 0: continue
for answer_text in answer:
sent = sents[i]
sents_copy = sents[:]
answer_text = self.remove_pad(answer_text)
answer_text = answer_text.strip()
print("Answer", answer)
print("Answer text", answer_text)
try:
ans_start_idx = sent.lower().index(answer_text.lower())
except ValueError:
# Means the answer is not in the sentence so we skip this one
continue
sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}"
sents_copy[i] = sent
source_text = " ".join(sents_copy)
source_text = f"generate question: {source_text}"
if self.model_type == "t5":
source_text = source_text + " </s>"
inputs.append({"answer": answer_text, "source_text": source_text})
return inputs
def clean_generated_QAs(self, generated_QAs):
clean_QAs = []
answers_used = set()
# Only allow 1 question per answer, take the first case of it
for qa in generated_QAs:
if qa['answer'] in answers_used:
break
answers_used.add(qa['answer'])
clean_QAs.append(qa)
return clean_QAs
def remove_pad(self, str):
if "<pad>" in str:
return str.replace("<pad>", "")
return str