add document for inference.
Browse files
README.md
CHANGED
@@ -1,22 +1,215 @@
|
|
1 |
---
|
2 |
-
base_model:
|
|
|
|
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
- unsloth
|
7 |
- llama
|
8 |
- trl
|
9 |
-
license:
|
10 |
language:
|
11 |
-
-
|
|
|
|
|
12 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Uploaded model
|
15 |
|
16 |
- **Developed by:** oxygen65
|
17 |
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** oxygen65/llm-jp-3-13b-finetune-2
|
19 |
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- oxygen65/llm-jp-3-13b-finetune-2
|
4 |
+
- llm-jp/llm-jp-3-13b
|
5 |
tags:
|
6 |
- text-generation-inference
|
7 |
- transformers
|
8 |
- unsloth
|
9 |
- llama
|
10 |
- trl
|
11 |
+
license: cc-by-nc-sa-4.0
|
12 |
language:
|
13 |
+
- ja
|
14 |
+
datasets:
|
15 |
+
- elyza/ELYZA-tasks-100
|
16 |
---
|
17 |
+
# How to Use
|
18 |
+
|
19 |
+
## 1. load this model and tokenizer
|
20 |
+
```python
|
21 |
+
from transformers import (
|
22 |
+
AutoModelForCausalLM,
|
23 |
+
AutoTokenizer,
|
24 |
+
BitsAndBytesConfig,
|
25 |
+
)
|
26 |
+
import torch
|
27 |
+
from tqdm import tqdm
|
28 |
+
import json
|
29 |
+
|
30 |
+
model_name = "oxygen65/llm-jp-3-13b-finetune-3"
|
31 |
+
|
32 |
+
# QLoRA config
|
33 |
+
bnb_config = BitsAndBytesConfig(
|
34 |
+
load_in_4bit=True,
|
35 |
+
bnb_4bit_quant_type="nf4",
|
36 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
37 |
+
bnb_4bit_use_double_quant=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
# Load model
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
quantization_config=bnb_config,
|
44 |
+
device_map="auto",
|
45 |
+
)
|
46 |
+
|
47 |
+
# Load tokenizer
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
49 |
+
```
|
50 |
+
|
51 |
+
## 2. load Eval Datasets
|
52 |
+
```python
|
53 |
+
tasks = []
|
54 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
55 |
+
item = ""
|
56 |
+
for line in f:
|
57 |
+
line = line.strip()
|
58 |
+
item += line
|
59 |
+
if item.endswith("}"):
|
60 |
+
tasks.append(json.loads(item))
|
61 |
+
item = ""
|
62 |
+
```
|
63 |
+
|
64 |
+
## 3. set up retrievers
|
65 |
+
if you can't find "rank_bm25" python package in your environment
|
66 |
+
|
67 |
+
```bash
|
68 |
+
!pip install rank_bm25
|
69 |
+
```
|
70 |
+
|
71 |
+
```python
|
72 |
+
from rank_bm25 import BM25Okapi
|
73 |
+
from nltk.tokenize import word_tokenize
|
74 |
+
import nltk
|
75 |
+
import numpy as np
|
76 |
+
|
77 |
+
|
78 |
+
# 必要なデータをダウンロード(初回のみ)
|
79 |
+
nltk.download('punkt')
|
80 |
+
nltk.download('punkt_tab')
|
81 |
+
|
82 |
+
def search_similar_documents_bm25(query, sample_tasks):
|
83 |
+
# トークン化(BM25はトークン化されたデータを要求します)
|
84 |
+
tokenized_documents = [word_tokenize(doc) for doc in sample_tasks['input']]
|
85 |
+
|
86 |
+
# BM25オブジェクトの作成
|
87 |
+
bm25 = BM25Okapi(tokenized_documents)
|
88 |
+
|
89 |
+
tokenized_query = word_tokenize(query)
|
90 |
+
# 類似度の計算
|
91 |
+
doc_scores = bm25.get_scores(tokenized_query)
|
92 |
+
# 類似度が高い順にソート
|
93 |
+
sorted_indexes = np.argsort(doc_scores)[::-1]
|
94 |
+
|
95 |
+
indexes = []
|
96 |
+
for i in range(len(doc_scores)):
|
97 |
+
if doc_scores[sorted_indexes[i]] < 20.0:
|
98 |
+
break
|
99 |
+
else:
|
100 |
+
indexes.append(sorted_indexes[i])
|
101 |
+
|
102 |
+
return indexes
|
103 |
+
|
104 |
+
from sentence_transformers import SentenceTransformer
|
105 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
106 |
+
import numpy as np
|
107 |
+
SentTF = SentenceTransformer('all-MiniLM-L6-v2')
|
108 |
+
def seearch_similar_documents_neuralRetriver(query, sample_tasks):
|
109 |
+
global SentTF
|
110 |
+
emb1 = SentTF.encode([query])
|
111 |
+
emb2 = SentTF.encode(sample_tasks['input'])
|
112 |
+
# 全ての組み合わせで類似度を計算
|
113 |
+
similarity_matrix = cosine_similarity(emb1, emb2) #時間かかるので先に計算しておくべき
|
114 |
+
# 類似度が高い順にソート
|
115 |
+
sorted_indexes = np.argsort(similarity_matrix[0])[::-1]
|
116 |
+
#print(sorted_indexes)
|
117 |
+
|
118 |
+
indexes = []
|
119 |
+
for i in range(len(sample_tasks['input'])):
|
120 |
+
if similarity_matrix[0][sorted_indexes[i]] < 0.75:
|
121 |
+
break
|
122 |
+
else:
|
123 |
+
indexes.append(sorted_indexes[i])
|
124 |
+
|
125 |
+
return indexes
|
126 |
+
|
127 |
+
def create_icl_prompt(input, sample_tasks, task_id):
|
128 |
+
indexes_bm25 = search_similar_documents_bm25(input, sample_tasks)
|
129 |
+
indexes_neu = seearch_similar_documents_neuralRetriver(input, sample_tasks)
|
130 |
+
indexes = list(set(indexes_bm25 + indexes_neu))
|
131 |
+
icl_prompt = ""
|
132 |
+
if indexes == []:
|
133 |
+
return ""
|
134 |
+
|
135 |
+
icl_prompt = f"""## 例題\n"""
|
136 |
+
for i in range(len(indexes)):
|
137 |
+
icl_prompt += f"""### 指示
|
138 |
+
{sample_tasks["input"][indexes[i]]}
|
139 |
+
### 回答
|
140 |
+
{sample_tasks["output"][indexes[i]]}
|
141 |
+
"""
|
142 |
+
icl_prompt += f"""
|
143 |
+
## 本題: 以下の指示に従って回答してください。step by stepで回答してください。
|
144 |
+
"""
|
145 |
+
return icl_prompt
|
146 |
+
|
147 |
+
create_icl_prompt(tasks[2]["input"], sample_tasks, 0)
|
148 |
+
```
|
149 |
+
|
150 |
+
### 4. Inference
|
151 |
+
```python
|
152 |
+
# llmjp
|
153 |
+
import re
|
154 |
+
pattern = r"^以下.*$"
|
155 |
+
|
156 |
+
# プロンプトの作成
|
157 |
+
sys_prompt = ""
|
158 |
+
icl_prompt = ""
|
159 |
+
results = []
|
160 |
+
loop = 0
|
161 |
+
for data in tqdm(tasks):
|
162 |
+
task_id = data["task_id"]
|
163 |
+
if task_id != 66 and task_id != 72:
|
164 |
+
continue
|
165 |
+
input = data["input"]
|
166 |
+
# in context learning用のプロンプト
|
167 |
+
icl_prompt = create_icl_prompt(input, sample_tasks, task_id)
|
168 |
+
|
169 |
+
prompt = f"""{sys_prompt}{icl_prompt}### 指示
|
170 |
+
{input}
|
171 |
+
### 回答
|
172 |
+
"""
|
173 |
+
# 1回目
|
174 |
+
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
175 |
+
with torch.no_grad():
|
176 |
+
outputs = model.generate(
|
177 |
+
tokenized_input,
|
178 |
+
max_new_tokens=512,
|
179 |
+
do_sample=False,
|
180 |
+
repetition_penalty=1.2,
|
181 |
+
eos_token_id=tokenizer.eos_token_id,
|
182 |
+
)[0]
|
183 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
184 |
+
|
185 |
+
while (True): #とりあえず出力。
|
186 |
+
line = output.splitlines()
|
187 |
+
if re.match(pattern, line[0]) and len(line) == 1:
|
188 |
+
print(f"#========================= Unexpected answer =========================#\n {line}")
|
189 |
+
outputs = model.generate(
|
190 |
+
tokenized_input,
|
191 |
+
max_new_tokens=512,
|
192 |
+
do_sample=True,
|
193 |
+
temperature=0.4,
|
194 |
+
repetition_penalty=1.2
|
195 |
+
)[0]
|
196 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
197 |
+
else: break
|
198 |
+
|
199 |
+
|
200 |
+
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
201 |
+
|
202 |
+
print(f"task_id: {data['task_id']}, prompt: {prompt}, output: {output}")
|
203 |
+
|
204 |
+
#break
|
205 |
+
```
|
206 |
|
207 |
# Uploaded model
|
208 |
|
209 |
- **Developed by:** oxygen65
|
210 |
- **License:** apache-2.0
|
211 |
+
- **Finetuned from model :** oxygen65/llm-jp-3-13b-finetune-2 (the original is llm-jp/llm-jp-3-13b)
|
212 |
|
213 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
214 |
|
215 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|