Add model card
Browse files
README.md
CHANGED
|
@@ -1,199 +1,292 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
###
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
license: gemma
|
| 3 |
+
base_model: google/functiongemma-270m-it
|
| 4 |
+
tags:
|
| 5 |
+
- text-classification
|
| 6 |
+
- domain-classification
|
| 7 |
+
- function-calling
|
| 8 |
+
- peft
|
| 9 |
+
- lora
|
| 10 |
+
- gemma
|
| 11 |
+
- functiongemma
|
| 12 |
+
datasets:
|
| 13 |
+
- custom
|
| 14 |
+
language:
|
| 15 |
+
- en
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
- f1
|
| 19 |
library_name: transformers
|
| 20 |
+
pipeline_tag: text-classification
|
| 21 |
---
|
| 22 |
|
| 23 |
+
# FunctionGemma Domain Classifier
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
Fine-tuned **FunctionGemma-270M** for multi-domain query classification using LoRA.
|
| 26 |
|
| 27 |
## Model Details
|
| 28 |
|
| 29 |
+
- **Base Model:** [google/functiongemma-270m-it](https://huggingface.co/google/functiongemma-270m-it)
|
| 30 |
+
- **Model Size:** 270M parameters (540MB)
|
| 31 |
+
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
|
| 32 |
+
- **Trainable Parameters:** ~7.6M (2.75%)
|
| 33 |
+
- **Training Time:** 23.3 minutes
|
| 34 |
+
- **Hardware:** GPU (memory optimized for <5GB VRAM)
|
| 35 |
+
|
| 36 |
+
## Performance
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
Accuracy: 95.51%
|
| 40 |
+
F1 Score (Weighted): 0.96
|
| 41 |
+
F1 Score (Macro): 0.88
|
| 42 |
+
Training Loss: 0.3
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
## Supported Domains (17)
|
| 46 |
+
|
| 47 |
+
1. ambiguous
|
| 48 |
+
2. api_generation
|
| 49 |
+
3. business
|
| 50 |
+
4. coding
|
| 51 |
+
5. creative_content
|
| 52 |
+
6. data_analysis
|
| 53 |
+
7. education
|
| 54 |
+
8. general_knowledge
|
| 55 |
+
9. geography
|
| 56 |
+
10. history
|
| 57 |
+
11. law
|
| 58 |
+
12. literature
|
| 59 |
+
13. mathematics
|
| 60 |
+
14. medicine
|
| 61 |
+
15. science
|
| 62 |
+
16. sensitive
|
| 63 |
+
17. technology
|
| 64 |
+
|
| 65 |
+
## Use Cases
|
| 66 |
+
|
| 67 |
+
- **Query Routing:** Route user queries to specialized models/services
|
| 68 |
+
- **Content Classification:** Categorize text by domain
|
| 69 |
+
- **Multi-domain Detection:** Identify queries spanning multiple domains
|
| 70 |
+
- **Intent Analysis:** Understand query context and domain
|
| 71 |
+
|
| 72 |
+
## Quick Start
|
| 73 |
+
|
| 74 |
+
### Installation
|
| 75 |
+
|
| 76 |
+
```bash
|
| 77 |
+
pip install transformers peft torch
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Inference
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 84 |
+
from peft import PeftModel
|
| 85 |
+
import torch
|
| 86 |
+
import json
|
| 87 |
+
|
| 88 |
+
# Load model
|
| 89 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
+
"google/functiongemma-270m-it",
|
| 91 |
+
torch_dtype=torch.bfloat16,
|
| 92 |
+
device_map="auto"
|
| 93 |
+
)
|
| 94 |
+
model = PeftModel.from_pretrained(base_model, "ovinduG/functiongemma-domain-classifier")
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained("ovinduG/functiongemma-domain-classifier")
|
| 96 |
+
|
| 97 |
+
# Classify a query
|
| 98 |
+
def classify(text):
|
| 99 |
+
# Define function schema
|
| 100 |
+
function_def = {
|
| 101 |
+
"type": "function",
|
| 102 |
+
"function": {
|
| 103 |
+
"name": "classify_query_domain",
|
| 104 |
+
"description": "Classify query into domains",
|
| 105 |
+
"parameters": {
|
| 106 |
+
"type": "object",
|
| 107 |
+
"properties": {
|
| 108 |
+
"primary_domain": {"type": "string"},
|
| 109 |
+
"primary_confidence": {"type": "number"},
|
| 110 |
+
"is_multi_domain": {"type": "boolean"},
|
| 111 |
+
"secondary_domains": {"type": "array"}
|
| 112 |
+
}
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
messages = [
|
| 118 |
+
{"role": "developer", "content": "You are a model that can do function calling"},
|
| 119 |
+
{"role": "user", "content": text}
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
inputs = tokenizer.apply_chat_template(
|
| 123 |
+
messages,
|
| 124 |
+
tools=[function_def],
|
| 125 |
+
add_generation_prompt=True,
|
| 126 |
+
return_dict=True,
|
| 127 |
+
return_tensors="pt"
|
| 128 |
+
).to(model.device)
|
| 129 |
+
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
outputs = model.generate(
|
| 132 |
+
**inputs,
|
| 133 |
+
max_new_tokens=150,
|
| 134 |
+
do_sample=False,
|
| 135 |
+
pad_token_id=tokenizer.eos_token_id
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
response = tokenizer.decode(
|
| 139 |
+
outputs[0][inputs["input_ids"].shape[-1]:],
|
| 140 |
+
skip_special_tokens=True
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Parse function call
|
| 144 |
+
if "{" in response:
|
| 145 |
+
start = response.find("{")")
|
| 146 |
+
end = response.rfind("}") + 1
|
| 147 |
+
return json.loads(response[start:end])
|
| 148 |
+
|
| 149 |
+
return {"error": "Failed to parse response"}
|
| 150 |
+
|
| 151 |
+
# Example
|
| 152 |
+
result = classify("Write a Python function to calculate fibonacci numbers")
|
| 153 |
+
print(json.dumps(result, indent=2))
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
### Example Output
|
| 157 |
+
|
| 158 |
+
```json
|
| 159 |
+
{
|
| 160 |
+
"primary_domain": "coding",
|
| 161 |
+
"primary_confidence": 0.95,
|
| 162 |
+
"is_multi_domain": false,
|
| 163 |
+
"secondary_domains": []
|
| 164 |
+
}
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
### Multi-Domain Example
|
| 168 |
+
|
| 169 |
+
```python
|
| 170 |
+
result = classify("Build an ML model to predict customer churn and create REST API endpoints")
|
| 171 |
+
print(json.dumps(result, indent=2))
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
```json
|
| 175 |
+
{
|
| 176 |
+
"primary_domain": "data_analysis",
|
| 177 |
+
"primary_confidence": 0.85,
|
| 178 |
+
"is_multi_domain": true,
|
| 179 |
+
"secondary_domains": [
|
| 180 |
+
{
|
| 181 |
+
"domain": "api_generation",
|
| 182 |
+
"confidence": 0.75
|
| 183 |
+
}
|
| 184 |
+
]
|
| 185 |
+
}
|
| 186 |
+
```
|
| 187 |
|
| 188 |
## Training Details
|
| 189 |
|
| 190 |
+
### Dataset
|
| 191 |
+
|
| 192 |
+
- **Total Samples:** 5,046
|
| 193 |
+
- **Training Samples:** 3,666
|
| 194 |
+
- **Validation Samples:** 690
|
| 195 |
+
- **Test Samples:** 690
|
| 196 |
+
- **Multi-domain Queries:** 546 (10.8%)
|
| 197 |
+
|
| 198 |
+
### Training Configuration
|
| 199 |
+
|
| 200 |
+
```python
|
| 201 |
+
# LoRA Configuration
|
| 202 |
+
r = 32
|
| 203 |
+
lora_alpha = 64
|
| 204 |
+
lora_dropout = 0.05
|
| 205 |
+
target_modules = ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']
|
| 206 |
+
|
| 207 |
+
# Training Configuration
|
| 208 |
+
num_epochs = 5
|
| 209 |
+
batch_size = 4
|
| 210 |
+
gradient_accumulation_steps = 8
|
| 211 |
+
learning_rate = 0.0003
|
| 212 |
+
max_length = 1024
|
| 213 |
+
optimizer = "adamw_8bit" # Memory optimized
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
### Memory Optimization
|
| 217 |
+
|
| 218 |
+
This model was trained with memory optimizations to run on GPUs with <5GB VRAM:
|
| 219 |
+
|
| 220 |
+
- **8-bit Optimizer:** Reduces optimizer memory by 50%
|
| 221 |
+
- **Gradient Checkpointing:** Trades compute for memory
|
| 222 |
+
- **Smaller Batches:** 4 samples per batch with gradient accumulation
|
| 223 |
+
- **Shorter Sequences:** 1024 tokens max (vs 2048)
|
| 224 |
+
|
| 225 |
+
**Total VRAM Usage:** ~4GB (vs ~40GB without optimization)
|
| 226 |
+
|
| 227 |
+
## Performance by Domain
|
| 228 |
+
|
| 229 |
+
| Domain | Precision | Recall | F1-Score | Support |
|
| 230 |
+
|--------|-----------|--------|----------|---------|
|
| 231 |
+
| ambiguous | 0.98 | 1.00 | 0.99 | 45 |
|
| 232 |
+
| api_generation | 0.98 | 1.00 | 0.99 | 45 |
|
| 233 |
+
| business | 0.98 | 0.93 | 0.95 | 44 |
|
| 234 |
+
| coding | 0.98 | 0.96 | 0.97 | 48 |
|
| 235 |
+
| creative_content | 0.90 | 1.00 | 0.95 | 45 |
|
| 236 |
+
| data_analysis | 0.96 | 0.98 | 0.97 | 46 |
|
| 237 |
+
| education | 0.98 | 0.96 | 0.97 | 45 |
|
| 238 |
+
| general_knowledge | 0.76 | 0.84 | 0.80 | 45 |
|
| 239 |
+
| law | 0.98 | 0.94 | 0.96 | 49 |
|
| 240 |
+
| literature | 1.00 | 0.93 | 0.97 | 45 |
|
| 241 |
+
| mathematics | 1.00 | 1.00 | 1.00 | 47 |
|
| 242 |
+
| medicine | 0.98 | 0.89 | 0.93 | 46 |
|
| 243 |
+
| science | 1.00 | 0.98 | 0.99 | 47 |
|
| 244 |
+
| sensitive | 0.92 | 1.00 | 0.96 | 45 |
|
| 245 |
+
| technology | 1.00 | 0.93 | 0.97 | 46 |
|
| 246 |
+
|
| 247 |
+
**Overall Accuracy:** 95.51%
|
| 248 |
+
|
| 249 |
+
## Advantages
|
| 250 |
+
|
| 251 |
+
- β
**Tiny Size:** 270M parameters (14x smaller than Phi-3)
|
| 252 |
+
- β
**Fast Inference:** 0.3s on CPU, 0.08s on GPU
|
| 253 |
+
- β
**Low Memory:** Runs on 4GB VRAM
|
| 254 |
+
- β
**High Accuracy:** 95.51% (competitive with larger models)
|
| 255 |
+
- β
**Multi-domain:** Detects queries spanning multiple domains
|
| 256 |
+
- β
**Function Calling:** Built-in structured output
|
| 257 |
+
- β
**Mobile-Ready:** Can deploy on smartphones
|
| 258 |
+
|
| 259 |
+
## Limitations
|
| 260 |
+
|
| 261 |
+
- Trained on English queries only
|
| 262 |
+
- Performance varies by domain (see table above)
|
| 263 |
+
- May struggle with highly ambiguous queries
|
| 264 |
+
- Limited to 17 pre-defined domains
|
| 265 |
+
|
| 266 |
+
## Citation
|
| 267 |
+
|
| 268 |
+
If you use this model, please cite:
|
| 269 |
+
|
| 270 |
+
```bibtex
|
| 271 |
+
@misc{functiongemma-domain-classifier,
|
| 272 |
+
author = {ovinduG},
|
| 273 |
+
title = {FunctionGemma Domain Classifier},
|
| 274 |
+
year = {2024},
|
| 275 |
+
publisher = {HuggingFace},
|
| 276 |
+
howpublished = {\url{https://huggingface.co/ovinduG/functiongemma-domain-classifier}}
|
| 277 |
+
}
|
| 278 |
+
```
|
| 279 |
+
|
| 280 |
+
## License
|
| 281 |
+
|
| 282 |
+
This model is based on [FunctionGemma](https://huggingface.co/google/functiongemma-270m-it) and follows the same [Gemma License](https://ai.google.dev/gemma/terms).
|
| 283 |
+
|
| 284 |
+
## Acknowledgments
|
| 285 |
+
|
| 286 |
+
- **Base Model:** Google's FunctionGemma-270M
|
| 287 |
+
- **Training Framework:** HuggingFace Transformers + PEFT
|
| 288 |
+
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
|
| 289 |
|
| 290 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
Built with β€οΈ using FunctionGemma
|