samuellau0802 commited on
Commit
0400a39
1 Parent(s): 791b15d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:4505
47
+ - loss:OnlineContrastiveLoss
48
+ widget:
49
+ - source_sentence: Greektown on the Danforth
50
+ sentences:
51
+ - Gregarious
52
+ - Gregarious
53
+ - Gregarious
54
+ - source_sentence: Temple of the Emerald Buddha (Wat Phra Kaew)
55
+ sentences:
56
+ - Respectful
57
+ - Uninterested
58
+ - Respectful
59
+ - source_sentence: Natureland Liat Towers
60
+ sentences:
61
+ - Careless
62
+ - Disinterested
63
+ - Aggressive
64
+ - source_sentence: Old Town
65
+ sentences:
66
+ - Reserved
67
+ - Laid-back
68
+ - Callous
69
+ - source_sentence: Khaosan Road
70
+ sentences:
71
+ - Adventurous
72
+ - Adventurous
73
+ - Reserved
74
+ model-index:
75
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
76
+ results:
77
+ - task:
78
+ type: binary-classification
79
+ name: Binary Classification
80
+ dataset:
81
+ name: Unknown
82
+ type: unknown
83
+ metrics:
84
+ - type: cosine_accuracy
85
+ value: 0.9573712255772646
86
+ name: Cosine Accuracy
87
+ - type: cosine_accuracy_threshold
88
+ value: 0.8162947297096252
89
+ name: Cosine Accuracy Threshold
90
+ - type: cosine_f1
91
+ value: 0.958041958041958
92
+ name: Cosine F1
93
+ - type: cosine_f1_threshold
94
+ value: 0.8131216764450073
95
+ name: Cosine F1 Threshold
96
+ - type: cosine_precision
97
+ value: 0.9681978798586572
98
+ name: Cosine Precision
99
+ - type: cosine_recall
100
+ value: 0.9480968858131488
101
+ name: Cosine Recall
102
+ - type: cosine_ap
103
+ value: 0.9909492524224418
104
+ name: Cosine Ap
105
+ - type: dot_accuracy
106
+ value: 0.9573712255772646
107
+ name: Dot Accuracy
108
+ - type: dot_accuracy_threshold
109
+ value: 0.8162947297096252
110
+ name: Dot Accuracy Threshold
111
+ - type: dot_f1
112
+ value: 0.958041958041958
113
+ name: Dot F1
114
+ - type: dot_f1_threshold
115
+ value: 0.8131217360496521
116
+ name: Dot F1 Threshold
117
+ - type: dot_precision
118
+ value: 0.9681978798586572
119
+ name: Dot Precision
120
+ - type: dot_recall
121
+ value: 0.9480968858131488
122
+ name: Dot Recall
123
+ - type: dot_ap
124
+ value: 0.9909492524224418
125
+ name: Dot Ap
126
+ - type: manhattan_accuracy
127
+ value: 0.9609236234458259
128
+ name: Manhattan Accuracy
129
+ - type: manhattan_accuracy_threshold
130
+ value: 9.564813613891602
131
+ name: Manhattan Accuracy Threshold
132
+ - type: manhattan_f1
133
+ value: 0.9619377162629758
134
+ name: Manhattan F1
135
+ - type: manhattan_f1_threshold
136
+ value: 9.564813613891602
137
+ name: Manhattan F1 Threshold
138
+ - type: manhattan_precision
139
+ value: 0.9619377162629758
140
+ name: Manhattan Precision
141
+ - type: manhattan_recall
142
+ value: 0.9619377162629758
143
+ name: Manhattan Recall
144
+ - type: manhattan_ap
145
+ value: 0.9908734681022205
146
+ name: Manhattan Ap
147
+ - type: euclidean_accuracy
148
+ value: 0.9573712255772646
149
+ name: Euclidean Accuracy
150
+ - type: euclidean_accuracy_threshold
151
+ value: 0.6061439514160156
152
+ name: Euclidean Accuracy Threshold
153
+ - type: euclidean_f1
154
+ value: 0.958041958041958
155
+ name: Euclidean F1
156
+ - type: euclidean_f1_threshold
157
+ value: 0.6113559007644653
158
+ name: Euclidean F1 Threshold
159
+ - type: euclidean_precision
160
+ value: 0.9681978798586572
161
+ name: Euclidean Precision
162
+ - type: euclidean_recall
163
+ value: 0.9480968858131488
164
+ name: Euclidean Recall
165
+ - type: euclidean_ap
166
+ value: 0.9909492524224418
167
+ name: Euclidean Ap
168
+ - type: max_accuracy
169
+ value: 0.9609236234458259
170
+ name: Max Accuracy
171
+ - type: max_accuracy_threshold
172
+ value: 9.564813613891602
173
+ name: Max Accuracy Threshold
174
+ - type: max_f1
175
+ value: 0.9619377162629758
176
+ name: Max F1
177
+ - type: max_f1_threshold
178
+ value: 9.564813613891602
179
+ name: Max F1 Threshold
180
+ - type: max_precision
181
+ value: 0.9681978798586572
182
+ name: Max Precision
183
+ - type: max_recall
184
+ value: 0.9619377162629758
185
+ name: Max Recall
186
+ - type: max_ap
187
+ value: 0.9909492524224418
188
+ name: Max Ap
189
+ - task:
190
+ type: binary-classification
191
+ name: Binary Classification
192
+ dataset:
193
+ name: test
194
+ type: test
195
+ metrics:
196
+ - type: cosine_accuracy
197
+ value: 0.9592198581560284
198
+ name: Cosine Accuracy
199
+ - type: cosine_accuracy_threshold
200
+ value: 0.7969272136688232
201
+ name: Cosine Accuracy Threshold
202
+ - type: cosine_f1
203
+ value: 0.9591474245115454
204
+ name: Cosine F1
205
+ - type: cosine_f1_threshold
206
+ value: 0.7969272136688232
207
+ name: Cosine F1 Threshold
208
+ - type: cosine_precision
209
+ value: 0.9574468085106383
210
+ name: Cosine Precision
211
+ - type: cosine_recall
212
+ value: 0.9608540925266904
213
+ name: Cosine Recall
214
+ - type: cosine_ap
215
+ value: 0.9877694290490489
216
+ name: Cosine Ap
217
+ - type: dot_accuracy
218
+ value: 0.9592198581560284
219
+ name: Dot Accuracy
220
+ - type: dot_accuracy_threshold
221
+ value: 0.7969271540641785
222
+ name: Dot Accuracy Threshold
223
+ - type: dot_f1
224
+ value: 0.9591474245115454
225
+ name: Dot F1
226
+ - type: dot_f1_threshold
227
+ value: 0.7969271540641785
228
+ name: Dot F1 Threshold
229
+ - type: dot_precision
230
+ value: 0.9574468085106383
231
+ name: Dot Precision
232
+ - type: dot_recall
233
+ value: 0.9608540925266904
234
+ name: Dot Recall
235
+ - type: dot_ap
236
+ value: 0.9877694290490489
237
+ name: Dot Ap
238
+ - type: manhattan_accuracy
239
+ value: 0.9556737588652482
240
+ name: Manhattan Accuracy
241
+ - type: manhattan_accuracy_threshold
242
+ value: 9.808526992797852
243
+ name: Manhattan Accuracy Threshold
244
+ - type: manhattan_f1
245
+ value: 0.9557522123893805
246
+ name: Manhattan F1
247
+ - type: manhattan_f1_threshold
248
+ value: 9.917011260986328
249
+ name: Manhattan F1 Threshold
250
+ - type: manhattan_precision
251
+ value: 0.9507042253521126
252
+ name: Manhattan Precision
253
+ - type: manhattan_recall
254
+ value: 0.9608540925266904
255
+ name: Manhattan Recall
256
+ - type: manhattan_ap
257
+ value: 0.9866404317968996
258
+ name: Manhattan Ap
259
+ - type: euclidean_accuracy
260
+ value: 0.9592198581560284
261
+ name: Euclidean Accuracy
262
+ - type: euclidean_accuracy_threshold
263
+ value: 0.6372953653335571
264
+ name: Euclidean Accuracy Threshold
265
+ - type: euclidean_f1
266
+ value: 0.9591474245115454
267
+ name: Euclidean F1
268
+ - type: euclidean_f1_threshold
269
+ value: 0.6372953653335571
270
+ name: Euclidean F1 Threshold
271
+ - type: euclidean_precision
272
+ value: 0.9574468085106383
273
+ name: Euclidean Precision
274
+ - type: euclidean_recall
275
+ value: 0.9608540925266904
276
+ name: Euclidean Recall
277
+ - type: euclidean_ap
278
+ value: 0.9877694290490489
279
+ name: Euclidean Ap
280
+ - type: max_accuracy
281
+ value: 0.9592198581560284
282
+ name: Max Accuracy
283
+ - type: max_accuracy_threshold
284
+ value: 9.808526992797852
285
+ name: Max Accuracy Threshold
286
+ - type: max_f1
287
+ value: 0.9591474245115454
288
+ name: Max F1
289
+ - type: max_f1_threshold
290
+ value: 9.917011260986328
291
+ name: Max F1 Threshold
292
+ - type: max_precision
293
+ value: 0.9574468085106383
294
+ name: Max Precision
295
+ - type: max_recall
296
+ value: 0.9608540925266904
297
+ name: Max Recall
298
+ - type: max_ap
299
+ value: 0.9877694290490489
300
+ name: Max Ap
301
+ ---
302
+
303
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
304
+
305
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
306
+
307
+ ## Model Details
308
+
309
+ ### Model Description
310
+ - **Model Type:** Sentence Transformer
311
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
312
+ - **Maximum Sequence Length:** 256 tokens
313
+ - **Output Dimensionality:** 384 tokens
314
+ - **Similarity Function:** Cosine Similarity
315
+ <!-- - **Training Dataset:** Unknown -->
316
+ <!-- - **Language:** Unknown -->
317
+ <!-- - **License:** Unknown -->
318
+
319
+ ### Model Sources
320
+
321
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
322
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
323
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
324
+
325
+ ### Full Model Architecture
326
+
327
+ ```
328
+ SentenceTransformer(
329
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
330
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
331
+ (2): Normalize()
332
+ )
333
+ ```
334
+
335
+ ## Usage
336
+
337
+ ### Direct Usage (Sentence Transformers)
338
+
339
+ First install the Sentence Transformers library:
340
+
341
+ ```bash
342
+ pip install -U sentence-transformers
343
+ ```
344
+
345
+ Then you can load this model and run inference.
346
+ ```python
347
+ from sentence_transformers import SentenceTransformer
348
+
349
+ # Download from the 🤗 Hub
350
+ model = SentenceTransformer("overfitting-co/A2P-constrastive-all")
351
+ # Run inference
352
+ sentences = [
353
+ 'Khaosan Road',
354
+ 'Reserved',
355
+ 'Adventurous',
356
+ ]
357
+ embeddings = model.encode(sentences)
358
+ print(embeddings.shape)
359
+ # [3, 384]
360
+
361
+ # Get the similarity scores for the embeddings
362
+ similarities = model.similarity(embeddings, embeddings)
363
+ print(similarities.shape)
364
+ # [3, 3]
365
+ ```
366
+
367
+ <!--
368
+ ### Direct Usage (Transformers)
369
+
370
+ <details><summary>Click to see the direct usage in Transformers</summary>
371
+
372
+ </details>
373
+ -->
374
+
375
+ <!--
376
+ ### Downstream Usage (Sentence Transformers)
377
+
378
+ You can finetune this model on your own dataset.
379
+
380
+ <details><summary>Click to expand</summary>
381
+
382
+ </details>
383
+ -->
384
+
385
+ <!--
386
+ ### Out-of-Scope Use
387
+
388
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
389
+ -->
390
+
391
+ ## Evaluation
392
+
393
+ ### Metrics
394
+
395
+ #### Binary Classification
396
+
397
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
398
+
399
+ | Metric | Value |
400
+ |:-----------------------------|:-----------|
401
+ | cosine_accuracy | 0.9574 |
402
+ | cosine_accuracy_threshold | 0.8163 |
403
+ | cosine_f1 | 0.958 |
404
+ | cosine_f1_threshold | 0.8131 |
405
+ | cosine_precision | 0.9682 |
406
+ | cosine_recall | 0.9481 |
407
+ | cosine_ap | 0.9909 |
408
+ | dot_accuracy | 0.9574 |
409
+ | dot_accuracy_threshold | 0.8163 |
410
+ | dot_f1 | 0.958 |
411
+ | dot_f1_threshold | 0.8131 |
412
+ | dot_precision | 0.9682 |
413
+ | dot_recall | 0.9481 |
414
+ | dot_ap | 0.9909 |
415
+ | manhattan_accuracy | 0.9609 |
416
+ | manhattan_accuracy_threshold | 9.5648 |
417
+ | manhattan_f1 | 0.9619 |
418
+ | manhattan_f1_threshold | 9.5648 |
419
+ | manhattan_precision | 0.9619 |
420
+ | manhattan_recall | 0.9619 |
421
+ | manhattan_ap | 0.9909 |
422
+ | euclidean_accuracy | 0.9574 |
423
+ | euclidean_accuracy_threshold | 0.6061 |
424
+ | euclidean_f1 | 0.958 |
425
+ | euclidean_f1_threshold | 0.6114 |
426
+ | euclidean_precision | 0.9682 |
427
+ | euclidean_recall | 0.9481 |
428
+ | euclidean_ap | 0.9909 |
429
+ | max_accuracy | 0.9609 |
430
+ | max_accuracy_threshold | 9.5648 |
431
+ | max_f1 | 0.9619 |
432
+ | max_f1_threshold | 9.5648 |
433
+ | max_precision | 0.9682 |
434
+ | max_recall | 0.9619 |
435
+ | **max_ap** | **0.9909** |
436
+
437
+ #### Binary Classification
438
+ * Dataset: `test`
439
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
440
+
441
+ | Metric | Value |
442
+ |:-----------------------------|:-----------|
443
+ | cosine_accuracy | 0.9592 |
444
+ | cosine_accuracy_threshold | 0.7969 |
445
+ | cosine_f1 | 0.9591 |
446
+ | cosine_f1_threshold | 0.7969 |
447
+ | cosine_precision | 0.9574 |
448
+ | cosine_recall | 0.9609 |
449
+ | cosine_ap | 0.9878 |
450
+ | dot_accuracy | 0.9592 |
451
+ | dot_accuracy_threshold | 0.7969 |
452
+ | dot_f1 | 0.9591 |
453
+ | dot_f1_threshold | 0.7969 |
454
+ | dot_precision | 0.9574 |
455
+ | dot_recall | 0.9609 |
456
+ | dot_ap | 0.9878 |
457
+ | manhattan_accuracy | 0.9557 |
458
+ | manhattan_accuracy_threshold | 9.8085 |
459
+ | manhattan_f1 | 0.9558 |
460
+ | manhattan_f1_threshold | 9.917 |
461
+ | manhattan_precision | 0.9507 |
462
+ | manhattan_recall | 0.9609 |
463
+ | manhattan_ap | 0.9866 |
464
+ | euclidean_accuracy | 0.9592 |
465
+ | euclidean_accuracy_threshold | 0.6373 |
466
+ | euclidean_f1 | 0.9591 |
467
+ | euclidean_f1_threshold | 0.6373 |
468
+ | euclidean_precision | 0.9574 |
469
+ | euclidean_recall | 0.9609 |
470
+ | euclidean_ap | 0.9878 |
471
+ | max_accuracy | 0.9592 |
472
+ | max_accuracy_threshold | 9.8085 |
473
+ | max_f1 | 0.9591 |
474
+ | max_f1_threshold | 9.917 |
475
+ | max_precision | 0.9574 |
476
+ | max_recall | 0.9609 |
477
+ | **max_ap** | **0.9878** |
478
+
479
+ <!--
480
+ ## Bias, Risks and Limitations
481
+
482
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
483
+ -->
484
+
485
+ <!--
486
+ ### Recommendations
487
+
488
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
489
+ -->
490
+
491
+ ## Training Details
492
+
493
+ ### Training Dataset
494
+
495
+ #### Unnamed Dataset
496
+
497
+
498
+ * Size: 4,505 training samples
499
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
500
+ * Approximate statistics based on the first 1000 samples:
501
+ | | sentence_0 | sentence_1 | label |
502
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------|
503
+ | type | string | string | int |
504
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.49 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.79 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>0: ~52.30%</li><li>1: ~47.70%</li></ul> |
505
+ * Samples:
506
+ | sentence_0 | sentence_1 | label |
507
+ |:----------------------------------------|:-------------------------|:---------------|
508
+ | <code>N Seoul Tower</code> | <code>Laid-back</code> | <code>0</code> |
509
+ | <code>Magere Brug</code> | <code>Romantic</code> | <code>1</code> |
510
+ | <code>Polynesian Cultural Center</code> | <code>Adventurous</code> | <code>1</code> |
511
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
512
+
513
+ ### Training Hyperparameters
514
+ #### Non-Default Hyperparameters
515
+
516
+ - `per_device_train_batch_size`: 32
517
+ - `per_device_eval_batch_size`: 32
518
+ - `num_train_epochs`: 5
519
+ - `multi_dataset_batch_sampler`: round_robin
520
+
521
+ #### All Hyperparameters
522
+ <details><summary>Click to expand</summary>
523
+
524
+ - `overwrite_output_dir`: False
525
+ - `do_predict`: False
526
+ - `eval_strategy`: no
527
+ - `prediction_loss_only`: True
528
+ - `per_device_train_batch_size`: 32
529
+ - `per_device_eval_batch_size`: 32
530
+ - `per_gpu_train_batch_size`: None
531
+ - `per_gpu_eval_batch_size`: None
532
+ - `gradient_accumulation_steps`: 1
533
+ - `eval_accumulation_steps`: None
534
+ - `torch_empty_cache_steps`: None
535
+ - `learning_rate`: 5e-05
536
+ - `weight_decay`: 0.0
537
+ - `adam_beta1`: 0.9
538
+ - `adam_beta2`: 0.999
539
+ - `adam_epsilon`: 1e-08
540
+ - `max_grad_norm`: 1
541
+ - `num_train_epochs`: 5
542
+ - `max_steps`: -1
543
+ - `lr_scheduler_type`: linear
544
+ - `lr_scheduler_kwargs`: {}
545
+ - `warmup_ratio`: 0.0
546
+ - `warmup_steps`: 0
547
+ - `log_level`: passive
548
+ - `log_level_replica`: warning
549
+ - `log_on_each_node`: True
550
+ - `logging_nan_inf_filter`: True
551
+ - `save_safetensors`: True
552
+ - `save_on_each_node`: False
553
+ - `save_only_model`: False
554
+ - `restore_callback_states_from_checkpoint`: False
555
+ - `no_cuda`: False
556
+ - `use_cpu`: False
557
+ - `use_mps_device`: False
558
+ - `seed`: 42
559
+ - `data_seed`: None
560
+ - `jit_mode_eval`: False
561
+ - `use_ipex`: False
562
+ - `bf16`: False
563
+ - `fp16`: False
564
+ - `fp16_opt_level`: O1
565
+ - `half_precision_backend`: auto
566
+ - `bf16_full_eval`: False
567
+ - `fp16_full_eval`: False
568
+ - `tf32`: None
569
+ - `local_rank`: 0
570
+ - `ddp_backend`: None
571
+ - `tpu_num_cores`: None
572
+ - `tpu_metrics_debug`: False
573
+ - `debug`: []
574
+ - `dataloader_drop_last`: False
575
+ - `dataloader_num_workers`: 0
576
+ - `dataloader_prefetch_factor`: None
577
+ - `past_index`: -1
578
+ - `disable_tqdm`: False
579
+ - `remove_unused_columns`: True
580
+ - `label_names`: None
581
+ - `load_best_model_at_end`: False
582
+ - `ignore_data_skip`: False
583
+ - `fsdp`: []
584
+ - `fsdp_min_num_params`: 0
585
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
586
+ - `fsdp_transformer_layer_cls_to_wrap`: None
587
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
588
+ - `deepspeed`: None
589
+ - `label_smoothing_factor`: 0.0
590
+ - `optim`: adamw_torch
591
+ - `optim_args`: None
592
+ - `adafactor`: False
593
+ - `group_by_length`: False
594
+ - `length_column_name`: length
595
+ - `ddp_find_unused_parameters`: None
596
+ - `ddp_bucket_cap_mb`: None
597
+ - `ddp_broadcast_buffers`: False
598
+ - `dataloader_pin_memory`: True
599
+ - `dataloader_persistent_workers`: False
600
+ - `skip_memory_metrics`: True
601
+ - `use_legacy_prediction_loop`: False
602
+ - `push_to_hub`: False
603
+ - `resume_from_checkpoint`: None
604
+ - `hub_model_id`: None
605
+ - `hub_strategy`: every_save
606
+ - `hub_private_repo`: False
607
+ - `hub_always_push`: False
608
+ - `gradient_checkpointing`: False
609
+ - `gradient_checkpointing_kwargs`: None
610
+ - `include_inputs_for_metrics`: False
611
+ - `eval_do_concat_batches`: True
612
+ - `fp16_backend`: auto
613
+ - `push_to_hub_model_id`: None
614
+ - `push_to_hub_organization`: None
615
+ - `mp_parameters`:
616
+ - `auto_find_batch_size`: False
617
+ - `full_determinism`: False
618
+ - `torchdynamo`: None
619
+ - `ray_scope`: last
620
+ - `ddp_timeout`: 1800
621
+ - `torch_compile`: False
622
+ - `torch_compile_backend`: None
623
+ - `torch_compile_mode`: None
624
+ - `dispatch_batches`: None
625
+ - `split_batches`: None
626
+ - `include_tokens_per_second`: False
627
+ - `include_num_input_tokens_seen`: False
628
+ - `neftune_noise_alpha`: None
629
+ - `optim_target_modules`: None
630
+ - `batch_eval_metrics`: False
631
+ - `eval_on_start`: False
632
+ - `eval_use_gather_object`: False
633
+ - `batch_sampler`: batch_sampler
634
+ - `multi_dataset_batch_sampler`: round_robin
635
+
636
+ </details>
637
+
638
+ ### Training Logs
639
+ | Epoch | Step | Training Loss | max_ap | test_max_ap |
640
+ |:------:|:----:|:-------------:|:------:|:-----------:|
641
+ | 1.0 | 141 | - | 0.6780 | - |
642
+ | 2.0 | 282 | - | 0.7538 | - |
643
+ | 3.0 | 423 | - | 0.8064 | - |
644
+ | 3.5461 | 500 | 6.7404 | - | - |
645
+ | 4.0 | 564 | - | 0.9751 | - |
646
+ | 5.0 | 705 | - | 0.9909 | 0.9878 |
647
+
648
+
649
+ ### Framework Versions
650
+ - Python: 3.10.12
651
+ - Sentence Transformers: 3.2.1
652
+ - Transformers: 4.44.2
653
+ - PyTorch: 2.5.0+cu121
654
+ - Accelerate: 0.34.2
655
+ - Datasets: 3.1.0
656
+ - Tokenizers: 0.19.1
657
+
658
+ ## Citation
659
+
660
+ ### BibTeX
661
+
662
+ #### Sentence Transformers
663
+ ```bibtex
664
+ @inproceedings{reimers-2019-sentence-bert,
665
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
666
+ author = "Reimers, Nils and Gurevych, Iryna",
667
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
668
+ month = "11",
669
+ year = "2019",
670
+ publisher = "Association for Computational Linguistics",
671
+ url = "https://arxiv.org/abs/1908.10084",
672
+ }
673
+ ```
674
+
675
+ <!--
676
+ ## Glossary
677
+
678
+ *Clearly define terms in order to be accessible across audiences.*
679
+ -->
680
+
681
+ <!--
682
+ ## Model Card Authors
683
+
684
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
685
+ -->
686
+
687
+ <!--
688
+ ## Model Card Contact
689
+
690
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
691
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57eb9aced9cc99457af46a3aa43c18acf7515d1013a80db844d68947eaaa620c
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff