shachargluska
commited on
Add SD1.5 example to README.MD
Browse filesThank you for your work!
I was curious to see the decoder at work so I wrote a small example of running it with SD1.5 adapter.
I hope that's alright with you.
![image.png](https://cdn-uploads.huggingface.co/production/uploads/668cd89caf57d6e4b5442719/8AJ8fVwwTFfFIca-wUyVx.png)
README.md
CHANGED
@@ -20,6 +20,50 @@ on real images. Plus it is MIT licensed so you can do whatever you want with it.
|
|
20 |
### Compare
|
21 |
Check out the comparison at [imgsli](https://imgsli.com/Mjc2MjA3).
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
### What do I do with this?
|
25 |
|
|
|
20 |
### Compare
|
21 |
Check out the comparison at [imgsli](https://imgsli.com/Mjc2MjA3).
|
22 |
|
23 |
+
### Use with SD1.5 (Diffusers)
|
24 |
+
```py
|
25 |
+
import torch
|
26 |
+
from diffusers import AutoencoderKL, StableDiffusionPipeline
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
from safetensors.torch import load_file
|
29 |
+
|
30 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
31 |
+
decoder_id = "ostris/vae-kl-f8-d16"
|
32 |
+
adapter_id = "ostris/16ch-VAE-Adapters"
|
33 |
+
adapter_ckpt = "16ch-VAE-Adapter-SD15-alpha.safetensors"
|
34 |
+
dtype = torch.float16
|
35 |
+
|
36 |
+
vae = AutoencoderKL.from_pretrained(decoder_id, torch_dtype=dtype)
|
37 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
|
38 |
+
|
39 |
+
ckpt_file = hf_hub_download(adapter_id, adapter_ckpt)
|
40 |
+
ckpt = load_file(ckpt_file)
|
41 |
+
|
42 |
+
lora_state_dict = {k: v for k, v in ckpt.items() if "lora" in k}
|
43 |
+
unet_state_dict = {k.replace("unet_", ""): v for k, v in ckpt.items() if "unet_" in k}
|
44 |
+
|
45 |
+
pipe.unet.conv_in = torch.nn.Conv2d(16, 320, 3, 1, 1)
|
46 |
+
pipe.unet.conv_out = torch.nn.Conv2d(320, 16, 3, 1, 1)
|
47 |
+
pipe.unet.load_state_dict(unet_state_dict, strict=False)
|
48 |
+
pipe.unet.conv_in.to(dtype)
|
49 |
+
pipe.unet.conv_out.to(dtype)
|
50 |
+
pipe.unet.config.in_channels = 16
|
51 |
+
pipe.unet.config.out_channels = 16
|
52 |
+
|
53 |
+
pipe.load_lora_weights(lora_state_dict)
|
54 |
+
pipe.fuse_lora()
|
55 |
+
|
56 |
+
pipe = pipe.to("cuda")
|
57 |
+
prompt = "a photo of an astronaut riding a horse on mars"
|
58 |
+
negative_prompt = (
|
59 |
+
"ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame,"
|
60 |
+
"extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature,"
|
61 |
+
"cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face"
|
62 |
+
)
|
63 |
+
image = pipe(prompt, negative_prompt=negative_prompt).images[0]
|
64 |
+
|
65 |
+
image.save("astronaut_rides_horse.png")
|
66 |
+
```
|
67 |
|
68 |
### What do I do with this?
|
69 |
|