osmancanyuca commited on
Commit
181f327
1 Parent(s): cc89803

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 285.47 +/- 12.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3bf6f689d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3bf6f68a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3bf6f68af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3bf6f68b80>", "_build": "<function ActorCriticPolicy._build at 0x7b3bf6f68c10>", "forward": "<function ActorCriticPolicy.forward at 0x7b3bf6f68ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3bf6f68d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3bf6f68dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3bf6f68e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3bf6f68ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3bf6f68f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3bf6f69000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3bf6f78280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2523136, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690189878628635154, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZlnLxIjJY/EsOnvUczCL820Ti95RasPAAAAAAAAAAA5pAtvR8KmD/QA1u+cLkavwmjnr19hM69AAAAAAAAAABaF4Q+0X8bvXEghTtc1DK6c+yIvrF+sLoAAIA/AACAP2Yp0bykr3a7r2KnvcXTnzww+8s8wS6IvQAAgD8AAIA/XbGXPhxcJT9udRo+RYYKv9070D5qZIa9AAAAAAAAAADa3489PVxdPi4nVr3OMJe+QFQGPdwOGr0AAAAAAAAAAKa01D0S7xU+k0lRvkzDqb6xdVy8YDpLvQAAAAAAAAAAAIamvF7CsD8+xZK9ZCcKv8blfr0Iu1o9AAAAAAAAAAAlh4i+wfkmP6oSfD5qgce+ZgoovT4QBD4AAAAAAAAAACBsSb7GzSI/0V28PUt26L75wLK9mOujPQAAAAAAAAAAejiBvtxRdT/Ko+69aUvlvmmQVL5nRDc8AAAAAAAAAABgMQq+1897P4JUSL6pBwK/+7IJvjoNVL0AAAAAAAAAABopkr3fOcI8s8a+vZB9L77GGJ69Ov1bvQAAAAAAAAAAZgBsvdVotD8f6TS+nRrbvpS4170GFCq9AAAAAAAAAABm2909OMj6u9GcNr48Fso8OGpSPYzOpb0AAIA/AACAP2blD73DjQo9oGpaPj8BWr50KuU9bVmaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF2QgLZzxSMAWyUS9yMAXSUR0CjM36iKziTdX2UKGgGR0BxNImF8G9paAdL7mgIR0CjM6P0RODbdX2UKGgGR0Bx/M0HhS9/aAdL6mgIR0CjM7uVPepGdX2UKGgGR0BwPHJPqLTAaAdL5mgIR0CjNFgdXDFZdX2UKGgGR0BwuLdLxqfwaAdL0GgIR0CjNJkKE385dX2UKGgGR0BwUVN8E3bVaAdL8mgIR0CjNKGaH9FXdX2UKGgGR0BwS6uX/o7naAdL12gIR0CjNMrfDUExdX2UKGgGR0BxH6s90RvnaAdL4WgIR0CjNQuv+wTudX2UKGgGR0BzXOloDgZTaAdLzWgIR0CjNTtl7MPjdX2UKGgGR0BwZszLwF1TaAdL4WgIR0CjNTu9nK4hdX2UKGgGR0BwZdxJd0JXaAdNAQFoCEdAozWukFfReHV9lChoBkdAc5lKL876pGgHTQsBaAhHQKM16y0KJEZ1fZQoaAZHQHFe8XvYvnNoB0vfaAhHQKM2BicXm/51fZQoaAZHQHMYgdS2phpoB00AAWgIR0CjNhVvMr3CdX2UKGgGR0By5I2S+xnnaAdNTAFoCEdAozaF1U2kz3V9lChoBkdAc3S+IuXeFmgHTQ8BaAhHQKM2pd30PH11fZQoaAZHQHLb1hXr+o9oB0v3aAhHQKM20q+ajN91fZQoaAZHQHFEw3YL9dhoB0v3aAhHQKM2+L7XQMR1fZQoaAZHQHGgiKekHlhoB0v9aAhHQKM2/FNL1291fZQoaAZHQG5Ivnr6ciJoB0vdaAhHQKM3CjdHlOp1fZQoaAZHQHJUlCPZIxxoB0vRaAhHQKM3GQKa5PN1fZQoaAZHQHF+UDlo11poB0vWaAhHQKM3LczqKP51fZQoaAZHQHI6g6ltTDRoB0vaaAhHQKM3Vyf+S8t1fZQoaAZHQHGO0CaJAMVoB0vOaAhHQKM3mFDfFaV1fZQoaAZHQHG06rmyPdVoB0vgaAhHQKM3yS1Vo6F1fZQoaAZHQHLLfW+XZ5BoB0v7aAhHQKM36Lronrp1fZQoaAZHQGzPxekYXO5oB0vpaAhHQKM4T/0dzXB1fZQoaAZHQG8ljGkvboNoB0vdaAhHQKM4mJa7mMh1fZQoaAZHQG+CC/fwZwZoB0v5aAhHQKM40GB4D9x1fZQoaAZHQHMQLZ39rGloB0v8aAhHQKM499tuUEB1fZQoaAZHQHFo+umrKeVoB0vQaAhHQKM5EtyPuG91fZQoaAZHQHFX1dcB2fVoB0vpaAhHQKM5RKoQ4CJ1fZQoaAZHQHD6yM98qnZoB0vnaAhHQKM5jzOoo/l1fZQoaAZHQG3P5XU6PsBoB0vhaAhHQKM5qFAVwgl1fZQoaAZHQG8QXxe9i+doB0vjaAhHQKM5sy5Zr591fZQoaAZHQHFA5xJd0JZoB0vhaAhHQKM5zpbD/ER1fZQoaAZHQHD/ClnAZbZoB0vzaAhHQKM58dGy5Zt1fZQoaAZHQHB/Fp48loloB0voaAhHQKM5+NXHR1J1fZQoaAZHQHNMRyn1nNBoB0u/aAhHQKM6KU9IPLB1fZQoaAZHQHO/+by6MBJoB0vdaAhHQKM6SOR1X/51fZQoaAZHQHCXkJ4SpR5oB0viaAhHQKM6ujMV1wJ1fZQoaAZHQHBxhePaL4xoB0vvaAhHQKM7W0+C9RJ1fZQoaAZHQG/C/M4cWCVoB0viaAhHQKM7dpljEvV1fZQoaAZHQHGzYGyHEdhoB0voaAhHQKM7wHxBmf51fZQoaAZHQGwwtyPuG9JoB0vnaAhHQKM74/HHWBl1fZQoaAZHQHGZrXxvvSdoB0v9aAhHQKM8URe1KGt1fZQoaAZHQHD0L4nF5v9oB00AAWgIR0CjPOeNkvsadX2UKGgGR0Buv0+1SflIaAdL42gIR0CjPPCPQv6CdX2UKGgGR0BxbwdgfEGaaAdL82gIR0CjPQAg5imVdX2UKGgGR0Bx4Cbb1yvLaAdNAgFoCEdAoz1tMTN+s3V9lChoBkdAcfKx0uDjBGgHTSgBaAhHQKM9mpRXOnl1fZQoaAZHQHFm3QhOgxtoB00qAWgIR0CjPa9R77bddX2UKGgGR0Bxqg6GQCCBaAdNBwFoCEdAoz3QmkWRBHV9lChoBkdAcU3dCVrylWgHS/toCEdAoz5V+y7f53V9lChoBkdAcxf+KCQLeGgHTSEBaAhHQKM+Ydtl7MR1fZQoaAZHQHFC0fxMFlloB0vQaAhHQKM+zymQ8wJ1fZQoaAZHQHFlfv8ZUDNoB0vtaAhHQKM+0FX7tRh1fZQoaAZHQG1+kjHGS6loB025AWgIR0CjP0/qoqCpdX2UKGgGR0BxjY8eS0SiaAdNEAFoCEdAoz9rHIZIhHV9lChoBkdAcomK1XvH92gHS/VoCEdAoz94Z/CqInV9lChoBkdActBAXl8w6GgHS9loCEdAoz+AQQL/j3V9lChoBkdAcdYs6JZW72gHS+5oCEdAo0BHkmx+rnV9lChoBkdAcaPBDXvphWgHS/BoCEdAo0BmQhfShXV9lChoBkdAcPn1aW5Yo2gHTQMBaAhHQKNAnxRVIZt1fZQoaAZHQHFnaUFB6a9oB0vmaAhHQKNArvhqCYl1fZQoaAZHQG6YpjlPrOZoB0vtaAhHQKNBBEETxoZ1fZQoaAZHQHDFQfQrtmdoB0vwaAhHQKNBKRxLkCF1fZQoaAZHQHAEXZsbedloB0vlaAhHQKNBgGQCCBh1fZQoaAZHQHDA1baAWi1oB0vhaAhHQKNBfc45tFd1fZQoaAZHQHFBtYSxqwhoB0vfaAhHQKNB7NA1Nxl1fZQoaAZHQG8PEpqh11ZoB0vuaAhHQKNCKEpy6tl1fZQoaAZHQHA9rJ4jbBZoB0v0aAhHQKNCxnDiwSt1fZQoaAZHQHKgG1pj+aVoB0vuaAhHQKNCzhKDkEN1fZQoaAZHQHEKIQrc0tRoB0v3aAhHQKNDE50bLlp1fZQoaAZHQHK7AKOT7l9oB0v9aAhHQKNDIEcsDnx1fZQoaAZHQHDB52pyZKFoB0vlaAhHQKNDxA+IM0B1fZQoaAZHQHCbVKTSssBoB0vhaAhHQKND08HObAl1fZQoaAZHQHGbRNmDlHVoB0v2aAhHQKNEYwjdHlR1fZQoaAZHQHEo6G+K0lZoB0vnaAhHQKNEwXDWK/F1fZQoaAZHQHBQsenyd4FoB0vWaAhHQKNE4/bCaZx1fZQoaAZHQHHYgqEvkBFoB00aAWgIR0CjRRCrT6SDdX2UKGgGR0BxNuD3/PxAaAdL4mgIR0CjRRYHPeHjdX2UKGgGR0BycVAOavzOaAdLz2gIR0CjRTy2H+IedX2UKGgGR0BeJw2MsH0LaAdN6ANoCEdAo0VNZA6dUnV9lChoBkdAcmKzOHFglWgHTTcBaAhHQKNF1S5RTCN1fZQoaAZHQHIk+jynUDxoB0vyaAhHQKNGmgwGnoB1fZQoaAZHQG1ZZMcp9Z1oB0vkaAhHQKNGqwCbMHN1fZQoaAZHQHGCLqY7aIxoB00pAWgIR0CjRtF+EytWdX2UKGgGR0BxpP7BO58SaAdNAAFoCEdAo0bZrULDynV9lChoBkdAcB8yWRigCmgHS9VoCEdAo0ccpkPMCHV9lChoBkdAbi2HY6GQCGgHTQgBaAhHQKNHO/TLGJh1fZQoaAZHQHGVgMpgCwNoB0v/aAhHQKNHpNwiqyZ1fZQoaAZHQHEpsqFyq+9oB0vkaAhHQKNH0x/ustF1fZQoaAZHQHEFspkPMB9oB0vfaAhHQKNILGff4yp1fZQoaAZHQHEwXFtKqXFoB0vUaAhHQKNIUNKh+OR1fZQoaAZHQG/wmGdqcmVoB0vlaAhHQKNIaCgbp/x1fZQoaAZHQHF8mrOqvNhoB0vmaAhHQKNItKL876p1fZQoaAZHQG6pvppvgm9oB0v5aAhHQKNIzyMkyDZ1fZQoaAZHQHDYAKOT7l9oB00OAWgIR0CjSNjv3JxOdX2UKGgGR0BxVKqlxffGaAdL1WgIR0CjSQ/DLr5ZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a53bfb38ff1c6a99e4e46f80b5132101782f9cfe68fe15feb58c19e244b07e02
3
+ size 146649
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3bf6f689d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3bf6f68a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3bf6f68af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3bf6f68b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b3bf6f68c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b3bf6f68ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3bf6f68d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3bf6f68dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b3bf6f68e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3bf6f68ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3bf6f68f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3bf6f69000>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b3bf6f78280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2523136,
25
+ "_total_timesteps": 2500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690189878628635154,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZlnLxIjJY/EsOnvUczCL820Ti95RasPAAAAAAAAAAA5pAtvR8KmD/QA1u+cLkavwmjnr19hM69AAAAAAAAAABaF4Q+0X8bvXEghTtc1DK6c+yIvrF+sLoAAIA/AACAP2Yp0bykr3a7r2KnvcXTnzww+8s8wS6IvQAAgD8AAIA/XbGXPhxcJT9udRo+RYYKv9070D5qZIa9AAAAAAAAAADa3489PVxdPi4nVr3OMJe+QFQGPdwOGr0AAAAAAAAAAKa01D0S7xU+k0lRvkzDqb6xdVy8YDpLvQAAAAAAAAAAAIamvF7CsD8+xZK9ZCcKv8blfr0Iu1o9AAAAAAAAAAAlh4i+wfkmP6oSfD5qgce+ZgoovT4QBD4AAAAAAAAAACBsSb7GzSI/0V28PUt26L75wLK9mOujPQAAAAAAAAAAejiBvtxRdT/Ko+69aUvlvmmQVL5nRDc8AAAAAAAAAABgMQq+1897P4JUSL6pBwK/+7IJvjoNVL0AAAAAAAAAABopkr3fOcI8s8a+vZB9L77GGJ69Ov1bvQAAAAAAAAAAZgBsvdVotD8f6TS+nRrbvpS4170GFCq9AAAAAAAAAABm2909OMj6u9GcNr48Fso8OGpSPYzOpb0AAIA/AACAP2blD73DjQo9oGpaPj8BWr50KuU9bVmaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.009254400000000107,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF2QgLZzxSMAWyUS9yMAXSUR0CjM36iKziTdX2UKGgGR0BxNImF8G9paAdL7mgIR0CjM6P0RODbdX2UKGgGR0Bx/M0HhS9/aAdL6mgIR0CjM7uVPepGdX2UKGgGR0BwPHJPqLTAaAdL5mgIR0CjNFgdXDFZdX2UKGgGR0BwuLdLxqfwaAdL0GgIR0CjNJkKE385dX2UKGgGR0BwUVN8E3bVaAdL8mgIR0CjNKGaH9FXdX2UKGgGR0BwS6uX/o7naAdL12gIR0CjNMrfDUExdX2UKGgGR0BxH6s90RvnaAdL4WgIR0CjNQuv+wTudX2UKGgGR0BzXOloDgZTaAdLzWgIR0CjNTtl7MPjdX2UKGgGR0BwZszLwF1TaAdL4WgIR0CjNTu9nK4hdX2UKGgGR0BwZdxJd0JXaAdNAQFoCEdAozWukFfReHV9lChoBkdAc5lKL876pGgHTQsBaAhHQKM16y0KJEZ1fZQoaAZHQHFe8XvYvnNoB0vfaAhHQKM2BicXm/51fZQoaAZHQHMYgdS2phpoB00AAWgIR0CjNhVvMr3CdX2UKGgGR0By5I2S+xnnaAdNTAFoCEdAozaF1U2kz3V9lChoBkdAc3S+IuXeFmgHTQ8BaAhHQKM2pd30PH11fZQoaAZHQHLb1hXr+o9oB0v3aAhHQKM20q+ajN91fZQoaAZHQHFEw3YL9dhoB0v3aAhHQKM2+L7XQMR1fZQoaAZHQHGgiKekHlhoB0v9aAhHQKM2/FNL1291fZQoaAZHQG5Ivnr6ciJoB0vdaAhHQKM3CjdHlOp1fZQoaAZHQHJUlCPZIxxoB0vRaAhHQKM3GQKa5PN1fZQoaAZHQHF+UDlo11poB0vWaAhHQKM3LczqKP51fZQoaAZHQHI6g6ltTDRoB0vaaAhHQKM3Vyf+S8t1fZQoaAZHQHGO0CaJAMVoB0vOaAhHQKM3mFDfFaV1fZQoaAZHQHG06rmyPdVoB0vgaAhHQKM3yS1Vo6F1fZQoaAZHQHLLfW+XZ5BoB0v7aAhHQKM36Lronrp1fZQoaAZHQGzPxekYXO5oB0vpaAhHQKM4T/0dzXB1fZQoaAZHQG8ljGkvboNoB0vdaAhHQKM4mJa7mMh1fZQoaAZHQG+CC/fwZwZoB0v5aAhHQKM40GB4D9x1fZQoaAZHQHMQLZ39rGloB0v8aAhHQKM499tuUEB1fZQoaAZHQHFo+umrKeVoB0vQaAhHQKM5EtyPuG91fZQoaAZHQHFX1dcB2fVoB0vpaAhHQKM5RKoQ4CJ1fZQoaAZHQHD6yM98qnZoB0vnaAhHQKM5jzOoo/l1fZQoaAZHQG3P5XU6PsBoB0vhaAhHQKM5qFAVwgl1fZQoaAZHQG8QXxe9i+doB0vjaAhHQKM5sy5Zr591fZQoaAZHQHFA5xJd0JZoB0vhaAhHQKM5zpbD/ER1fZQoaAZHQHD/ClnAZbZoB0vzaAhHQKM58dGy5Zt1fZQoaAZHQHB/Fp48loloB0voaAhHQKM5+NXHR1J1fZQoaAZHQHNMRyn1nNBoB0u/aAhHQKM6KU9IPLB1fZQoaAZHQHO/+by6MBJoB0vdaAhHQKM6SOR1X/51fZQoaAZHQHCXkJ4SpR5oB0viaAhHQKM6ujMV1wJ1fZQoaAZHQHBxhePaL4xoB0vvaAhHQKM7W0+C9RJ1fZQoaAZHQG/C/M4cWCVoB0viaAhHQKM7dpljEvV1fZQoaAZHQHGzYGyHEdhoB0voaAhHQKM7wHxBmf51fZQoaAZHQGwwtyPuG9JoB0vnaAhHQKM74/HHWBl1fZQoaAZHQHGZrXxvvSdoB0v9aAhHQKM8URe1KGt1fZQoaAZHQHD0L4nF5v9oB00AAWgIR0CjPOeNkvsadX2UKGgGR0Buv0+1SflIaAdL42gIR0CjPPCPQv6CdX2UKGgGR0BxbwdgfEGaaAdL82gIR0CjPQAg5imVdX2UKGgGR0Bx4Cbb1yvLaAdNAgFoCEdAoz1tMTN+s3V9lChoBkdAcfKx0uDjBGgHTSgBaAhHQKM9mpRXOnl1fZQoaAZHQHFm3QhOgxtoB00qAWgIR0CjPa9R77bddX2UKGgGR0Bxqg6GQCCBaAdNBwFoCEdAoz3QmkWRBHV9lChoBkdAcU3dCVrylWgHS/toCEdAoz5V+y7f53V9lChoBkdAcxf+KCQLeGgHTSEBaAhHQKM+Ydtl7MR1fZQoaAZHQHFC0fxMFlloB0vQaAhHQKM+zymQ8wJ1fZQoaAZHQHFlfv8ZUDNoB0vtaAhHQKM+0FX7tRh1fZQoaAZHQG1+kjHGS6loB025AWgIR0CjP0/qoqCpdX2UKGgGR0BxjY8eS0SiaAdNEAFoCEdAoz9rHIZIhHV9lChoBkdAcomK1XvH92gHS/VoCEdAoz94Z/CqInV9lChoBkdActBAXl8w6GgHS9loCEdAoz+AQQL/j3V9lChoBkdAcdYs6JZW72gHS+5oCEdAo0BHkmx+rnV9lChoBkdAcaPBDXvphWgHS/BoCEdAo0BmQhfShXV9lChoBkdAcPn1aW5Yo2gHTQMBaAhHQKNAnxRVIZt1fZQoaAZHQHFnaUFB6a9oB0vmaAhHQKNArvhqCYl1fZQoaAZHQG6YpjlPrOZoB0vtaAhHQKNBBEETxoZ1fZQoaAZHQHDFQfQrtmdoB0vwaAhHQKNBKRxLkCF1fZQoaAZHQHAEXZsbedloB0vlaAhHQKNBgGQCCBh1fZQoaAZHQHDA1baAWi1oB0vhaAhHQKNBfc45tFd1fZQoaAZHQHFBtYSxqwhoB0vfaAhHQKNB7NA1Nxl1fZQoaAZHQG8PEpqh11ZoB0vuaAhHQKNCKEpy6tl1fZQoaAZHQHA9rJ4jbBZoB0v0aAhHQKNCxnDiwSt1fZQoaAZHQHKgG1pj+aVoB0vuaAhHQKNCzhKDkEN1fZQoaAZHQHEKIQrc0tRoB0v3aAhHQKNDE50bLlp1fZQoaAZHQHK7AKOT7l9oB0v9aAhHQKNDIEcsDnx1fZQoaAZHQHDB52pyZKFoB0vlaAhHQKNDxA+IM0B1fZQoaAZHQHCbVKTSssBoB0vhaAhHQKND08HObAl1fZQoaAZHQHGbRNmDlHVoB0v2aAhHQKNEYwjdHlR1fZQoaAZHQHEo6G+K0lZoB0vnaAhHQKNEwXDWK/F1fZQoaAZHQHBQsenyd4FoB0vWaAhHQKNE4/bCaZx1fZQoaAZHQHHYgqEvkBFoB00aAWgIR0CjRRCrT6SDdX2UKGgGR0BxNuD3/PxAaAdL4mgIR0CjRRYHPeHjdX2UKGgGR0BycVAOavzOaAdLz2gIR0CjRTy2H+IedX2UKGgGR0BeJw2MsH0LaAdN6ANoCEdAo0VNZA6dUnV9lChoBkdAcmKzOHFglWgHTTcBaAhHQKNF1S5RTCN1fZQoaAZHQHIk+jynUDxoB0vyaAhHQKNGmgwGnoB1fZQoaAZHQG1ZZMcp9Z1oB0vkaAhHQKNGqwCbMHN1fZQoaAZHQHGCLqY7aIxoB00pAWgIR0CjRtF+EytWdX2UKGgGR0BxpP7BO58SaAdNAAFoCEdAo0bZrULDynV9lChoBkdAcB8yWRigCmgHS9VoCEdAo0ccpkPMCHV9lChoBkdAbi2HY6GQCGgHTQgBaAhHQKNHO/TLGJh1fZQoaAZHQHGVgMpgCwNoB0v/aAhHQKNHpNwiqyZ1fZQoaAZHQHEpsqFyq+9oB0vkaAhHQKNH0x/ustF1fZQoaAZHQHEFspkPMB9oB0vfaAhHQKNILGff4yp1fZQoaAZHQHEwXFtKqXFoB0vUaAhHQKNIUNKh+OR1fZQoaAZHQG/wmGdqcmVoB0vlaAhHQKNIaCgbp/x1fZQoaAZHQHF8mrOqvNhoB0vmaAhHQKNItKL876p1fZQoaAZHQG6pvppvgm9oB0v5aAhHQKNIzyMkyDZ1fZQoaAZHQHDYAKOT7l9oB00OAWgIR0CjSNjv3JxOdX2UKGgGR0BxVKqlxffGaAdL1WgIR0CjSQ/DLr5ZdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 308,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bbac55648608c0eb6b22890739c076c08aa67dc09d8846a19c927423e5e1b8f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884ca51865674569c0bb532ede9258fb02133e9b24c1929ee2a0adc47042e72d
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (164 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.4697258856705, "std_reward": 12.05910467731354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T10:14:47.925162"}