osiria commited on
Commit
e062cd5
1 Parent(s): 994b129

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - it
5
  ---
6
+ --------------------------------------------------------------------------------------------------
7
+
8
+ <body>
9
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
10
+ <br>
11
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
12
+ <br>
13
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: Distilled Universal Sentence Encoder</span>
14
+ <br>
15
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
16
+ <br>
17
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
20
+ </body>
21
+
22
+ --------------------------------------------------------------------------------------------------
23
+
24
+ <h3>Model description</h3>
25
+
26
+ This is a <b>Universal Sentence Encoder</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using <b>mDistilUSE</b> ([distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)) as a starting point and focusing it on the Italian language by modifying the embedding layer
27
+ (as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
28
+
29
+ The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB.
30
+
31
+ It can be used to encode Italian texts and compute similarities between them.
32
+
33
+ <h3>Quick usage</h3>
34
+
35
+ ```python
36
+ from transformers import AutoTokenizer, AutoModel
37
+ import numpy as np
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("../osiria/distiluse-base-italian/")
40
+ model = AutoModel.from_pretrained("../osiria/distiluse-base-italian/")
41
+ text1 = "Alessandro Manzoni è stato uno scrittore italiano"
42
+ text2 = "Giacomo Leopardi è stato un poeta italiano"
43
+ vec1 = model(tokenizer.encode(text1, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()
44
+ vec2 = model(tokenizer.encode(text2, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()
45
+ cosine_similarity = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2))
46
+ print("COSINE SIMILARITY:", cosine_similarity)
47
+
48
+ # COSINE SIMILARITY: 0.734292
49
+ ```
50
+
51
+ <h3>References</h3>
52
+
53
+ [1] https://arxiv.org/abs/1907.04307
54
+
55
+ [2] https://arxiv.org/abs/2010.05609
56
+
57
+ <h3>License</h3>
58
+
59
+ The model is released under <b>Apache-2.0</b> license