osiria commited on
Commit
7017167
·
1 Parent(s): 9147500

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -1,3 +1,48 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - it
5
  ---
6
+ --------------------------------------------------------------------------------------------------
7
+
8
+ <body>
9
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
10
+ <br>
11
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
12
+ <br>
13
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DeBERTa</span>
14
+ <br>
15
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
16
+ <br>
17
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
20
+ </body>
21
+
22
+ --------------------------------------------------------------------------------------------------
23
+
24
+ <h3>Model description</h3>
25
+
26
+ This is a <b>DeBERTa</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using <b>mDeBERTa</b> ([mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base)) as a starting point and focusing it on the Italian language by modifying the embedding layer
27
+ (as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
28
+
29
+ The resulting model has 124M parameters, a vocabulary of 50.256 tokens, and a size of ~500 MB.
30
+
31
+ <h3>Quick usage</h3>
32
+
33
+ ```python
34
+ from transformers import DebertaV2TokenizerFast, DebertaV2Model
35
+
36
+ tokenizer = DebertaV2TokenizerFast.from_pretrained("osiria/deberta-base-italian")
37
+ model = DebertaV2Model.from_pretrained("osiria/deberta-base-italian")
38
+ ```
39
+
40
+ <h3>References</h3>
41
+
42
+ [1] https://arxiv.org/abs/2006.03654
43
+
44
+ [2] https://arxiv.org/abs/2010.05609
45
+
46
+ <h3>License</h3>
47
+
48
+ The model is released under <b>MIT</b> license