Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,106 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- it
|
5 |
+
datasets:
|
6 |
+
- squad_it
|
7 |
+
widget:
|
8 |
+
- text: Quale libro fu scritto da Alessandro Manzoni?
|
9 |
+
context: Alessandro Manzoni pubblicò la prima versione de I Promessi Sposi nel 1827
|
10 |
+
- text: In quali competizioni gareggia la Ferrari?
|
11 |
+
context: La Scuderia Ferrari è una squadra corse italiana di Formula 1 con sede a Maranello
|
12 |
+
- text: Quale sport è riferito alla Serie A?
|
13 |
+
context: Il campionato di Serie A è la massima divisione professionistica del campionato italiano di calcio maschile
|
14 |
+
model-index:
|
15 |
+
- name: osiria/bert-italian-cased-question-answering
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: question-answering
|
19 |
+
name: Question Answering
|
20 |
+
dataset:
|
21 |
+
name: squad_it
|
22 |
+
type: squad_it
|
23 |
+
metrics:
|
24 |
+
- type: exact-match
|
25 |
+
value: 0.6572
|
26 |
+
name: Exact Match
|
27 |
+
- type: f1
|
28 |
+
value: 0.7706
|
29 |
+
name: F1
|
30 |
+
pipeline_tag: question-answering
|
31 |
---
|
32 |
+
|
33 |
+
--------------------------------------------------------------------------------------------------
|
34 |
+
|
35 |
+
<body>
|
36 |
+
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
|
37 |
+
<br>
|
38 |
+
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> Task: Question Answering</span>
|
39 |
+
<br>
|
40 |
+
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model: BERT</span>
|
41 |
+
<br>
|
42 |
+
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span>
|
43 |
+
<br>
|
44 |
+
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;"> </span>
|
45 |
+
<br>
|
46 |
+
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
|
47 |
+
</body>
|
48 |
+
|
49 |
+
--------------------------------------------------------------------------------------------------
|
50 |
+
|
51 |
+
<h3>Model description</h3>
|
52 |
+
|
53 |
+
This is a <b>BERT</b> <b>[1]</b> model for the <b>Italian</b> language, fine-tuned for <b>Extractive Question Answering</b> on the [SQuAD-IT](https://huggingface.co/datasets/squad_it) dataset <b>[2]</b>
|
54 |
+
|
55 |
+
If you are looking for a more accurate (but slightly heavier) model, you can refer to: https://huggingface.co/osiria/deberta-italian-question-answering
|
56 |
+
|
57 |
+
<b>update: version 2.0</b>
|
58 |
+
|
59 |
+
The 2.0 version further improves the performances by exploiting a 2-phases fine-tuning strategy: the model is first fine-tuned on the English SQuAD v2 (1 epoch, 20% warmup ratio, and max learning rate of 3e-5) then further fine-tuned on the Italian SQuAD (2 epochs, no warmup, initial learning rate of 3e-5)
|
60 |
+
|
61 |
+
In order to maximize the benefits of the multilingual procedure, [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in [bert-base-italian-cased](https://huggingface.co/osiria/bert-base-italian-cased) to obtain a mono-lingual model size
|
62 |
+
|
63 |
+
|
64 |
+
<h3>Training and Performances</h3>
|
65 |
+
|
66 |
+
The model is trained to perform question answering, given a context and a question (under the assumption that the context contains the answer to the question). It has been fine-tuned for Extractive Question Answering, using the SQuAD-IT dataset, for 2 epochs with a linearly decaying learning rate starting from 3e-5, maximum sequence length of 384 and document stride of 128.
|
67 |
+
<br>The dataset includes 54.159 training instances and 7.609 test instances
|
68 |
+
|
69 |
+
The performances on the test set are reported in the following table:
|
70 |
+
|
71 |
+
| EM | F1 |
|
72 |
+
| ------ | ------ |
|
73 |
+
| 65.72 | 77.06 |
|
74 |
+
|
75 |
+
Testing notebook: https://huggingface.co/osiria/bert-italian-cased-question-answering/blob/main/osiria_bert_italian_cased_qa_evaluation.ipynb
|
76 |
+
|
77 |
+
<h3>Quick usage</h3>
|
78 |
+
|
79 |
+
```python
|
80 |
+
from transformers import BertTokenizerFast, BertForQuestionAnswering
|
81 |
+
from transformers import pipeline
|
82 |
+
|
83 |
+
tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-italian-cased-question-answering")
|
84 |
+
model = BertForQuestionAnswering.from_pretrained("osiria/bert-italian-cased-question-answering")
|
85 |
+
|
86 |
+
pipeline_qa = pipeline("question-answering", model = model, tokenizer = tokenizer)
|
87 |
+
pipeline_qa(context = "Alessandro Manzoni è nato a Milano nel 1785", question = "Dove è nato Manzoni?")
|
88 |
+
|
89 |
+
# {'score': 0.9922313690185547, 'start': 28, 'end': 34, 'answer': 'Milano'}
|
90 |
+
```
|
91 |
+
|
92 |
+
<h3>References</h3>
|
93 |
+
|
94 |
+
[1] https://arxiv.org/abs/1810.04805
|
95 |
+
|
96 |
+
[2] https://link.springer.com/chapter/10.1007/978-3-030-03840-3_29
|
97 |
+
|
98 |
+
<h3>Limitations</h3>
|
99 |
+
|
100 |
+
This model was trained SQuAD-IT which is mainly a machine translated version of the original SQuAD v1.1. This means that the quality of the training set is limited by the machine translation.
|
101 |
+
Moreover, the model is meant to answer questions under the assumption that the required information is actually contained in the given context (which is the underlying assumption of SQuAD v1.1).
|
102 |
+
If the assumption is violated, the model will try to return an answer in any case, which is going to be incorrect.
|
103 |
+
|
104 |
+
<h3>License</h3>
|
105 |
+
|
106 |
+
The model is released under <b>Apache-2.0</b> license
|