oscarwu commited on
Commit
48451f4
·
1 Parent(s): e0605fd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: mlcovid19-classifier
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # mlcovid19-classifier
14
+
15
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.4116
18
+ - F1 Macro: 0.6750
19
+ - F1 Misinformation: 0.9407
20
+ - F1 Factual: 0.8529
21
+ - F1 Other: 0.2315
22
+ - Prec Macro: 0.7057
23
+ - Prec Misinformation: 0.9229
24
+ - Prec Factual: 0.8958
25
+ - Prec Other: 0.2983
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 8
49
+ - total_train_batch_size: 256
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 4367
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
59
+ | 0.8111 | 3.67 | 500 | 0.4101 | 0.5506 | 0.9162 | 0.7356 | 0.0 | 0.5421 | 0.8969 | 0.7295 | 0.0 |
60
+ | 0.3688 | 7.35 | 1000 | 0.3397 | 0.5770 | 0.9321 | 0.7988 | 0.0 | 0.5694 | 0.9111 | 0.7972 | 0.0 |
61
+ | 0.3012 | 11.03 | 1500 | 0.3011 | 0.5912 | 0.9415 | 0.8322 | 0.0 | 0.5955 | 0.9104 | 0.8761 | 0.0 |
62
+ | 0.249 | 14.7 | 2000 | 0.3020 | 0.5931 | 0.9404 | 0.8388 | 0.0 | 0.5841 | 0.9206 | 0.8317 | 0.0 |
63
+ | 0.1957 | 18.38 | 2500 | 0.3308 | 0.6402 | 0.9406 | 0.8433 | 0.1365 | 0.7126 | 0.9234 | 0.8445 | 0.3699 |
64
+ | 0.1438 | 22.06 | 3000 | 0.3502 | 0.6615 | 0.9406 | 0.8529 | 0.1911 | 0.6952 | 0.9283 | 0.8543 | 0.3030 |
65
+ | 0.0996 | 25.73 | 3500 | 0.4116 | 0.6750 | 0.9407 | 0.8529 | 0.2315 | 0.7057 | 0.9229 | 0.8958 | 0.2983 |
66
+ | 0.0657 | 29.41 | 4000 | 0.4413 | 0.6422 | 0.9428 | 0.8497 | 0.1342 | 0.7126 | 0.9269 | 0.8453 | 0.3655 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.23.0
72
+ - Pytorch 1.12.1+cu113
73
+ - Datasets 2.5.2
74
+ - Tokenizers 0.13.1