update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: mlcovid19-classifier
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# mlcovid19-classifier
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.4116
|
18 |
+
- F1 Macro: 0.6750
|
19 |
+
- F1 Misinformation: 0.9407
|
20 |
+
- F1 Factual: 0.8529
|
21 |
+
- F1 Other: 0.2315
|
22 |
+
- Prec Macro: 0.7057
|
23 |
+
- Prec Misinformation: 0.9229
|
24 |
+
- Prec Factual: 0.8958
|
25 |
+
- Prec Other: 0.2983
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 8
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 4367
|
53 |
+
- num_epochs: 30
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
59 |
+
| 0.8111 | 3.67 | 500 | 0.4101 | 0.5506 | 0.9162 | 0.7356 | 0.0 | 0.5421 | 0.8969 | 0.7295 | 0.0 |
|
60 |
+
| 0.3688 | 7.35 | 1000 | 0.3397 | 0.5770 | 0.9321 | 0.7988 | 0.0 | 0.5694 | 0.9111 | 0.7972 | 0.0 |
|
61 |
+
| 0.3012 | 11.03 | 1500 | 0.3011 | 0.5912 | 0.9415 | 0.8322 | 0.0 | 0.5955 | 0.9104 | 0.8761 | 0.0 |
|
62 |
+
| 0.249 | 14.7 | 2000 | 0.3020 | 0.5931 | 0.9404 | 0.8388 | 0.0 | 0.5841 | 0.9206 | 0.8317 | 0.0 |
|
63 |
+
| 0.1957 | 18.38 | 2500 | 0.3308 | 0.6402 | 0.9406 | 0.8433 | 0.1365 | 0.7126 | 0.9234 | 0.8445 | 0.3699 |
|
64 |
+
| 0.1438 | 22.06 | 3000 | 0.3502 | 0.6615 | 0.9406 | 0.8529 | 0.1911 | 0.6952 | 0.9283 | 0.8543 | 0.3030 |
|
65 |
+
| 0.0996 | 25.73 | 3500 | 0.4116 | 0.6750 | 0.9407 | 0.8529 | 0.2315 | 0.7057 | 0.9229 | 0.8958 | 0.2983 |
|
66 |
+
| 0.0657 | 29.41 | 4000 | 0.4413 | 0.6422 | 0.9428 | 0.8497 | 0.1342 | 0.7126 | 0.9269 | 0.8453 | 0.3655 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.23.0
|
72 |
+
- Pytorch 1.12.1+cu113
|
73 |
+
- Datasets 2.5.2
|
74 |
+
- Tokenizers 0.13.1
|