orion-penner HF staff commited on
Commit
dc27455
1 Parent(s): 13514b7

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget: []
11
+ pipeline_tag: text-classification
12
+ inference: true
13
+ ---
14
+
15
+ # SetFit
16
+
17
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
18
+
19
+ The model has been trained using an efficient few-shot learning technique that involves:
20
+
21
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
22
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
23
+
24
+ ## Model Details
25
+
26
+ ### Model Description
27
+ - **Model Type:** SetFit
28
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
29
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
30
+ - **Maximum Sequence Length:** 256 tokens
31
+ - **Number of Classes:** 2 classes
32
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
33
+ <!-- - **Language:** Unknown -->
34
+ <!-- - **License:** Unknown -->
35
+
36
+ ### Model Sources
37
+
38
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
39
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
40
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
41
+
42
+ ## Uses
43
+
44
+ ### Direct Use for Inference
45
+
46
+ First install the SetFit library:
47
+
48
+ ```bash
49
+ pip install setfit
50
+ ```
51
+
52
+ Then you can load this model and run inference.
53
+
54
+ ```python
55
+ from setfit import SetFitModel
56
+
57
+ # Download from the 🤗 Hub
58
+ model = SetFitModel.from_pretrained("orion-penner/setfit-all-MiniLM-L6-v2-sst2-32-shot-public")
59
+ # Run inference
60
+ preds = model("I loved the spiderman movie!")
61
+ ```
62
+
63
+ <!--
64
+ ### Downstream Use
65
+
66
+ *List how someone could finetune this model on their own dataset.*
67
+ -->
68
+
69
+ <!--
70
+ ### Out-of-Scope Use
71
+
72
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
73
+ -->
74
+
75
+ <!--
76
+ ## Bias, Risks and Limitations
77
+
78
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
79
+ -->
80
+
81
+ <!--
82
+ ### Recommendations
83
+
84
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
85
+ -->
86
+
87
+ ## Training Details
88
+
89
+ ### Framework Versions
90
+ - Python: 3.10.12
91
+ - SetFit: 1.0.1
92
+ - Sentence Transformers: 2.2.2
93
+ - Transformers: 4.35.2
94
+ - PyTorch: 2.1.0+cu121
95
+ - Datasets: 2.16.1
96
+ - Tokenizers: 0.15.0
97
+
98
+ ## Citation
99
+
100
+ ### BibTeX
101
+ ```bibtex
102
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
103
+ doi = {10.48550/ARXIV.2209.11055},
104
+ url = {https://arxiv.org/abs/2209.11055},
105
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
106
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
107
+ title = {Efficient Few-Shot Learning Without Prompts},
108
+ publisher = {arXiv},
109
+ year = {2022},
110
+ copyright = {Creative Commons Attribution 4.0 International}
111
+ }
112
+ ```
113
+
114
+ <!--
115
+ ## Glossary
116
+
117
+ *Clearly define terms in order to be accessible across audiences.*
118
+ -->
119
+
120
+ <!--
121
+ ## Model Card Authors
122
+
123
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
124
+ -->
125
+
126
+ <!--
127
+ ## Model Card Contact
128
+
129
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
130
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/tomaarsen_setfit-all-MiniLM-L6-v2-sst2-32-shot/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "negative",
5
+ "positive"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c84cd054d8df053969f22082d5ab9f9da9ca389a37a14f3a92f1bd923dfde8f5
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed31b270bdd8cbdae3e211b5cdc262f902f28f16300024a0068fd8500eed054d
3
+ size 3871
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 256,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff