|
"""Functionality for loading chains.""" |
|
|
|
from __future__ import annotations |
|
|
|
import json |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Union |
|
|
|
import yaml |
|
from langchain_core._api import deprecated |
|
from langchain_core.prompts.loading import ( |
|
_load_output_parser, |
|
load_prompt, |
|
load_prompt_from_config, |
|
) |
|
|
|
from langchain.chains import ReduceDocumentsChain |
|
from langchain.chains.api.base import APIChain |
|
from langchain.chains.base import Chain |
|
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain |
|
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain |
|
from langchain.chains.combine_documents.refine import RefineDocumentsChain |
|
from langchain.chains.combine_documents.stuff import StuffDocumentsChain |
|
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder |
|
from langchain.chains.llm import LLMChain |
|
from langchain.chains.llm_checker.base import LLMCheckerChain |
|
from langchain.chains.llm_math.base import LLMMathChain |
|
from langchain.chains.qa_with_sources.base import QAWithSourcesChain |
|
from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain |
|
from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain |
|
from langchain.chains.retrieval_qa.base import RetrievalQA, VectorDBQA |
|
|
|
if TYPE_CHECKING: |
|
from langchain_community.chains.graph_qa.cypher import GraphCypherQAChain |
|
|
|
from langchain.chains.llm_requests import LLMRequestsChain |
|
|
|
try: |
|
from langchain_community.llms.loading import load_llm, load_llm_from_config |
|
except ImportError: |
|
|
|
def load_llm(*args: Any, **kwargs: Any) -> None: |
|
raise ImportError( |
|
"To use this load_llm functionality you must install the " |
|
"langchain_community package. " |
|
"You can install it with `pip install langchain_community`" |
|
) |
|
|
|
def load_llm_from_config( |
|
*args: Any, **kwargs: Any |
|
) -> None: |
|
raise ImportError( |
|
"To use this load_llm_from_config functionality you must install the " |
|
"langchain_community package. " |
|
"You can install it with `pip install langchain_community`" |
|
) |
|
|
|
|
|
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" |
|
|
|
|
|
def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain: |
|
"""Load LLM chain from config dict.""" |
|
if "llm" in config: |
|
llm_config = config.pop("llm") |
|
llm = load_llm_from_config(llm_config, **kwargs) |
|
elif "llm_path" in config: |
|
llm = load_llm(config.pop("llm_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm` or `llm_path` must be present.") |
|
|
|
if "prompt" in config: |
|
prompt_config = config.pop("prompt") |
|
prompt = load_prompt_from_config(prompt_config) |
|
elif "prompt_path" in config: |
|
prompt = load_prompt(config.pop("prompt_path")) |
|
else: |
|
raise ValueError("One of `prompt` or `prompt_path` must be present.") |
|
_load_output_parser(config) |
|
|
|
return LLMChain(llm=llm, prompt=prompt, **config) |
|
|
|
|
|
def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder: |
|
"""Load hypothetical document embedder chain from config dict.""" |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
if "embeddings" in kwargs: |
|
embeddings = kwargs.pop("embeddings") |
|
else: |
|
raise ValueError("`embeddings` must be present.") |
|
return HypotheticalDocumentEmbedder( |
|
llm_chain=llm_chain, |
|
base_embeddings=embeddings, |
|
**config, |
|
) |
|
|
|
|
|
def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain: |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
|
|
if not isinstance(llm_chain, LLMChain): |
|
raise ValueError(f"Expected LLMChain, got {llm_chain}") |
|
|
|
if "document_prompt" in config: |
|
prompt_config = config.pop("document_prompt") |
|
document_prompt = load_prompt_from_config(prompt_config) |
|
elif "document_prompt_path" in config: |
|
document_prompt = load_prompt(config.pop("document_prompt_path")) |
|
else: |
|
raise ValueError( |
|
"One of `document_prompt` or `document_prompt_path` must be present." |
|
) |
|
|
|
return StuffDocumentsChain( |
|
llm_chain=llm_chain, document_prompt=document_prompt, **config |
|
) |
|
|
|
|
|
def _load_map_reduce_documents_chain( |
|
config: dict, **kwargs: Any |
|
) -> MapReduceDocumentsChain: |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
|
|
if not isinstance(llm_chain, LLMChain): |
|
raise ValueError(f"Expected LLMChain, got {llm_chain}") |
|
|
|
if "reduce_documents_chain" in config: |
|
reduce_documents_chain = load_chain_from_config( |
|
config.pop("reduce_documents_chain"), **kwargs |
|
) |
|
elif "reduce_documents_chain_path" in config: |
|
reduce_documents_chain = load_chain( |
|
config.pop("reduce_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
reduce_documents_chain = _load_reduce_documents_chain(config, **kwargs) |
|
|
|
return MapReduceDocumentsChain( |
|
llm_chain=llm_chain, |
|
reduce_documents_chain=reduce_documents_chain, |
|
**config, |
|
) |
|
|
|
|
|
def _load_reduce_documents_chain(config: dict, **kwargs: Any) -> ReduceDocumentsChain: |
|
combine_documents_chain = None |
|
collapse_documents_chain = None |
|
|
|
if "combine_documents_chain" in config: |
|
combine_document_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_document_chain_config, **kwargs |
|
) |
|
elif "combine_document_chain" in config: |
|
combine_document_chain_config = config.pop("combine_document_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_document_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
elif "combine_document_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_document_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
|
|
if "collapse_documents_chain" in config: |
|
collapse_document_chain_config = config.pop("collapse_documents_chain") |
|
if collapse_document_chain_config is None: |
|
collapse_documents_chain = None |
|
else: |
|
collapse_documents_chain = load_chain_from_config( |
|
collapse_document_chain_config, **kwargs |
|
) |
|
elif "collapse_documents_chain_path" in config: |
|
collapse_documents_chain = load_chain( |
|
config.pop("collapse_documents_chain_path"), **kwargs |
|
) |
|
elif "collapse_document_chain" in config: |
|
collapse_document_chain_config = config.pop("collapse_document_chain") |
|
if collapse_document_chain_config is None: |
|
collapse_documents_chain = None |
|
else: |
|
collapse_documents_chain = load_chain_from_config( |
|
collapse_document_chain_config, **kwargs |
|
) |
|
elif "collapse_document_chain_path" in config: |
|
collapse_documents_chain = load_chain( |
|
config.pop("collapse_document_chain_path"), **kwargs |
|
) |
|
|
|
return ReduceDocumentsChain( |
|
combine_documents_chain=combine_documents_chain, |
|
collapse_documents_chain=collapse_documents_chain, |
|
**config, |
|
) |
|
|
|
|
|
def _load_llm_bash_chain(config: dict, **kwargs: Any) -> Any: |
|
from langchain_experimental.llm_bash.base import LLMBashChain |
|
|
|
llm_chain = None |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
|
|
elif "llm" in config: |
|
llm_config = config.pop("llm") |
|
llm = load_llm_from_config(llm_config, **kwargs) |
|
|
|
|
|
elif "llm_path" in config: |
|
llm = load_llm(config.pop("llm_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
if "prompt" in config: |
|
prompt_config = config.pop("prompt") |
|
prompt = load_prompt_from_config(prompt_config) |
|
elif "prompt_path" in config: |
|
prompt = load_prompt(config.pop("prompt_path")) |
|
if llm_chain: |
|
return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config) |
|
else: |
|
return LLMBashChain(llm=llm, prompt=prompt, **config) |
|
|
|
|
|
def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain: |
|
if "llm" in config: |
|
llm_config = config.pop("llm") |
|
llm = load_llm_from_config(llm_config, **kwargs) |
|
elif "llm_path" in config: |
|
llm = load_llm(config.pop("llm_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm` or `llm_path` must be present.") |
|
if "create_draft_answer_prompt" in config: |
|
create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") |
|
create_draft_answer_prompt = load_prompt_from_config( |
|
create_draft_answer_prompt_config |
|
) |
|
elif "create_draft_answer_prompt_path" in config: |
|
create_draft_answer_prompt = load_prompt( |
|
config.pop("create_draft_answer_prompt_path") |
|
) |
|
if "list_assertions_prompt" in config: |
|
list_assertions_prompt_config = config.pop("list_assertions_prompt") |
|
list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) |
|
elif "list_assertions_prompt_path" in config: |
|
list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) |
|
if "check_assertions_prompt" in config: |
|
check_assertions_prompt_config = config.pop("check_assertions_prompt") |
|
check_assertions_prompt = load_prompt_from_config( |
|
check_assertions_prompt_config |
|
) |
|
elif "check_assertions_prompt_path" in config: |
|
check_assertions_prompt = load_prompt( |
|
config.pop("check_assertions_prompt_path") |
|
) |
|
if "revised_answer_prompt" in config: |
|
revised_answer_prompt_config = config.pop("revised_answer_prompt") |
|
revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) |
|
elif "revised_answer_prompt_path" in config: |
|
revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) |
|
return LLMCheckerChain( |
|
llm=llm, |
|
create_draft_answer_prompt=create_draft_answer_prompt, |
|
list_assertions_prompt=list_assertions_prompt, |
|
check_assertions_prompt=check_assertions_prompt, |
|
revised_answer_prompt=revised_answer_prompt, |
|
**config, |
|
) |
|
|
|
|
|
def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: |
|
llm_chain = None |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
|
|
elif "llm" in config: |
|
llm_config = config.pop("llm") |
|
llm = load_llm_from_config(llm_config, **kwargs) |
|
|
|
|
|
elif "llm_path" in config: |
|
llm = load_llm(config.pop("llm_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
if "prompt" in config: |
|
prompt_config = config.pop("prompt") |
|
prompt = load_prompt_from_config(prompt_config) |
|
elif "prompt_path" in config: |
|
prompt = load_prompt(config.pop("prompt_path")) |
|
if llm_chain: |
|
return LLMMathChain(llm_chain=llm_chain, prompt=prompt, **config) |
|
else: |
|
return LLMMathChain(llm=llm, prompt=prompt, **config) |
|
|
|
|
|
def _load_map_rerank_documents_chain( |
|
config: dict, **kwargs: Any |
|
) -> MapRerankDocumentsChain: |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
return MapRerankDocumentsChain(llm_chain=llm_chain, **config) |
|
|
|
|
|
def _load_pal_chain(config: dict, **kwargs: Any) -> Any: |
|
from langchain_experimental.pal_chain import PALChain |
|
|
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
return PALChain(llm_chain=llm_chain, **config) |
|
|
|
|
|
def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain: |
|
if "initial_llm_chain" in config: |
|
initial_llm_chain_config = config.pop("initial_llm_chain") |
|
initial_llm_chain = load_chain_from_config(initial_llm_chain_config, **kwargs) |
|
elif "initial_llm_chain_path" in config: |
|
initial_llm_chain = load_chain(config.pop("initial_llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError( |
|
"One of `initial_llm_chain` or `initial_llm_chain_path` must be present." |
|
) |
|
if "refine_llm_chain" in config: |
|
refine_llm_chain_config = config.pop("refine_llm_chain") |
|
refine_llm_chain = load_chain_from_config(refine_llm_chain_config, **kwargs) |
|
elif "refine_llm_chain_path" in config: |
|
refine_llm_chain = load_chain(config.pop("refine_llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError( |
|
"One of `refine_llm_chain` or `refine_llm_chain_path` must be present." |
|
) |
|
if "document_prompt" in config: |
|
prompt_config = config.pop("document_prompt") |
|
document_prompt = load_prompt_from_config(prompt_config) |
|
elif "document_prompt_path" in config: |
|
document_prompt = load_prompt(config.pop("document_prompt_path")) |
|
return RefineDocumentsChain( |
|
initial_llm_chain=initial_llm_chain, |
|
refine_llm_chain=refine_llm_chain, |
|
document_prompt=document_prompt, |
|
**config, |
|
) |
|
|
|
|
|
def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: |
|
if "combine_documents_chain" in config: |
|
combine_documents_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_documents_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) |
|
|
|
|
|
def _load_sql_database_chain(config: dict, **kwargs: Any) -> Any: |
|
from langchain_experimental.sql import SQLDatabaseChain |
|
|
|
if "database" in kwargs: |
|
database = kwargs.pop("database") |
|
else: |
|
raise ValueError("`database` must be present.") |
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
return SQLDatabaseChain(llm_chain=chain, database=database, **config) |
|
if "llm" in config: |
|
llm_config = config.pop("llm") |
|
llm = load_llm_from_config(llm_config, **kwargs) |
|
elif "llm_path" in config: |
|
llm = load_llm(config.pop("llm_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm` or `llm_path` must be present.") |
|
if "prompt" in config: |
|
prompt_config = config.pop("prompt") |
|
prompt = load_prompt_from_config(prompt_config) |
|
else: |
|
prompt = None |
|
|
|
return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) |
|
|
|
|
|
def _load_vector_db_qa_with_sources_chain( |
|
config: dict, **kwargs: Any |
|
) -> VectorDBQAWithSourcesChain: |
|
if "vectorstore" in kwargs: |
|
vectorstore = kwargs.pop("vectorstore") |
|
else: |
|
raise ValueError("`vectorstore` must be present.") |
|
if "combine_documents_chain" in config: |
|
combine_documents_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_documents_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
return VectorDBQAWithSourcesChain( |
|
combine_documents_chain=combine_documents_chain, |
|
vectorstore=vectorstore, |
|
**config, |
|
) |
|
|
|
|
|
def _load_retrieval_qa(config: dict, **kwargs: Any) -> RetrievalQA: |
|
if "retriever" in kwargs: |
|
retriever = kwargs.pop("retriever") |
|
else: |
|
raise ValueError("`retriever` must be present.") |
|
if "combine_documents_chain" in config: |
|
combine_documents_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_documents_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
return RetrievalQA( |
|
combine_documents_chain=combine_documents_chain, |
|
retriever=retriever, |
|
**config, |
|
) |
|
|
|
|
|
def _load_retrieval_qa_with_sources_chain( |
|
config: dict, **kwargs: Any |
|
) -> RetrievalQAWithSourcesChain: |
|
if "retriever" in kwargs: |
|
retriever = kwargs.pop("retriever") |
|
else: |
|
raise ValueError("`retriever` must be present.") |
|
if "combine_documents_chain" in config: |
|
combine_documents_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_documents_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
return RetrievalQAWithSourcesChain( |
|
combine_documents_chain=combine_documents_chain, |
|
retriever=retriever, |
|
**config, |
|
) |
|
|
|
|
|
def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA: |
|
if "vectorstore" in kwargs: |
|
vectorstore = kwargs.pop("vectorstore") |
|
else: |
|
raise ValueError("`vectorstore` must be present.") |
|
if "combine_documents_chain" in config: |
|
combine_documents_chain_config = config.pop("combine_documents_chain") |
|
combine_documents_chain = load_chain_from_config( |
|
combine_documents_chain_config, **kwargs |
|
) |
|
elif "combine_documents_chain_path" in config: |
|
combine_documents_chain = load_chain( |
|
config.pop("combine_documents_chain_path"), **kwargs |
|
) |
|
else: |
|
raise ValueError( |
|
"One of `combine_documents_chain` or " |
|
"`combine_documents_chain_path` must be present." |
|
) |
|
return VectorDBQA( |
|
combine_documents_chain=combine_documents_chain, |
|
vectorstore=vectorstore, |
|
**config, |
|
) |
|
|
|
|
|
def _load_graph_cypher_chain(config: dict, **kwargs: Any) -> GraphCypherQAChain: |
|
if "graph" in kwargs: |
|
graph = kwargs.pop("graph") |
|
else: |
|
raise ValueError("`graph` must be present.") |
|
if "cypher_generation_chain" in config: |
|
cypher_generation_chain_config = config.pop("cypher_generation_chain") |
|
cypher_generation_chain = load_chain_from_config( |
|
cypher_generation_chain_config, **kwargs |
|
) |
|
else: |
|
raise ValueError("`cypher_generation_chain` must be present.") |
|
if "qa_chain" in config: |
|
qa_chain_config = config.pop("qa_chain") |
|
qa_chain = load_chain_from_config(qa_chain_config, **kwargs) |
|
else: |
|
raise ValueError("`qa_chain` must be present.") |
|
|
|
try: |
|
from langchain_community.chains.graph_qa.cypher import GraphCypherQAChain |
|
except ImportError: |
|
raise ImportError( |
|
"To use this GraphCypherQAChain functionality you must install the " |
|
"langchain_community package. " |
|
"You can install it with `pip install langchain_community`" |
|
) |
|
return GraphCypherQAChain( |
|
graph=graph, |
|
cypher_generation_chain=cypher_generation_chain, |
|
qa_chain=qa_chain, |
|
**config, |
|
) |
|
|
|
|
|
def _load_api_chain(config: dict, **kwargs: Any) -> APIChain: |
|
if "api_request_chain" in config: |
|
api_request_chain_config = config.pop("api_request_chain") |
|
api_request_chain = load_chain_from_config(api_request_chain_config, **kwargs) |
|
elif "api_request_chain_path" in config: |
|
api_request_chain = load_chain(config.pop("api_request_chain_path")) |
|
else: |
|
raise ValueError( |
|
"One of `api_request_chain` or `api_request_chain_path` must be present." |
|
) |
|
if "api_answer_chain" in config: |
|
api_answer_chain_config = config.pop("api_answer_chain") |
|
api_answer_chain = load_chain_from_config(api_answer_chain_config, **kwargs) |
|
elif "api_answer_chain_path" in config: |
|
api_answer_chain = load_chain(config.pop("api_answer_chain_path"), **kwargs) |
|
else: |
|
raise ValueError( |
|
"One of `api_answer_chain` or `api_answer_chain_path` must be present." |
|
) |
|
if "requests_wrapper" in kwargs: |
|
requests_wrapper = kwargs.pop("requests_wrapper") |
|
else: |
|
raise ValueError("`requests_wrapper` must be present.") |
|
return APIChain( |
|
api_request_chain=api_request_chain, |
|
api_answer_chain=api_answer_chain, |
|
requests_wrapper=requests_wrapper, |
|
**config, |
|
) |
|
|
|
|
|
def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain: |
|
try: |
|
from langchain.chains.llm_requests import LLMRequestsChain |
|
except ImportError: |
|
raise ImportError( |
|
"To use this LLMRequestsChain functionality you must install the " |
|
"langchain package. " |
|
"You can install it with `pip install langchain`" |
|
) |
|
|
|
if "llm_chain" in config: |
|
llm_chain_config = config.pop("llm_chain") |
|
llm_chain = load_chain_from_config(llm_chain_config, **kwargs) |
|
elif "llm_chain_path" in config: |
|
llm_chain = load_chain(config.pop("llm_chain_path"), **kwargs) |
|
else: |
|
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") |
|
if "requests_wrapper" in kwargs: |
|
requests_wrapper = kwargs.pop("requests_wrapper") |
|
return LLMRequestsChain( |
|
llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config |
|
) |
|
else: |
|
return LLMRequestsChain(llm_chain=llm_chain, **config) |
|
|
|
|
|
type_to_loader_dict = { |
|
"api_chain": _load_api_chain, |
|
"hyde_chain": _load_hyde_chain, |
|
"llm_chain": _load_llm_chain, |
|
"llm_bash_chain": _load_llm_bash_chain, |
|
"llm_checker_chain": _load_llm_checker_chain, |
|
"llm_math_chain": _load_llm_math_chain, |
|
"llm_requests_chain": _load_llm_requests_chain, |
|
"pal_chain": _load_pal_chain, |
|
"qa_with_sources_chain": _load_qa_with_sources_chain, |
|
"stuff_documents_chain": _load_stuff_documents_chain, |
|
"map_reduce_documents_chain": _load_map_reduce_documents_chain, |
|
"reduce_documents_chain": _load_reduce_documents_chain, |
|
"map_rerank_documents_chain": _load_map_rerank_documents_chain, |
|
"refine_documents_chain": _load_refine_documents_chain, |
|
"sql_database_chain": _load_sql_database_chain, |
|
"vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, |
|
"vector_db_qa": _load_vector_db_qa, |
|
"retrieval_qa": _load_retrieval_qa, |
|
"retrieval_qa_with_sources_chain": _load_retrieval_qa_with_sources_chain, |
|
"graph_cypher_chain": _load_graph_cypher_chain, |
|
} |
|
|
|
|
|
@deprecated( |
|
since="0.2.13", |
|
message=( |
|
"This function is deprecated and will be removed in langchain 1.0. " |
|
"At that point chains must be imported from their respective modules." |
|
), |
|
removal="1.0", |
|
) |
|
def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: |
|
"""Load chain from Config Dict.""" |
|
if "_type" not in config: |
|
raise ValueError("Must specify a chain Type in config") |
|
config_type = config.pop("_type") |
|
|
|
if config_type not in type_to_loader_dict: |
|
raise ValueError(f"Loading {config_type} chain not supported") |
|
|
|
chain_loader = type_to_loader_dict[config_type] |
|
return chain_loader(config, **kwargs) |
|
|
|
|
|
@deprecated( |
|
since="0.2.13", |
|
message=( |
|
"This function is deprecated and will be removed in langchain 1.0. " |
|
"At that point chains must be imported from their respective modules." |
|
), |
|
removal="1.0", |
|
) |
|
def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: |
|
"""Unified method for loading a chain from LangChainHub or local fs.""" |
|
if isinstance(path, str) and path.startswith("lc://"): |
|
raise RuntimeError( |
|
"Loading from the deprecated github-based Hub is no longer supported. " |
|
"Please use the new LangChain Hub at https://smith.langchain.com/hub " |
|
"instead." |
|
) |
|
return _load_chain_from_file(path, **kwargs) |
|
|
|
|
|
def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain: |
|
"""Load chain from file.""" |
|
|
|
if isinstance(file, str): |
|
file_path = Path(file) |
|
else: |
|
file_path = file |
|
|
|
if file_path.suffix == ".json": |
|
with open(file_path) as f: |
|
config = json.load(f) |
|
elif file_path.suffix.endswith((".yaml", ".yml")): |
|
with open(file_path, "r") as f: |
|
config = yaml.safe_load(f) |
|
else: |
|
raise ValueError("File type must be json or yaml") |
|
|
|
|
|
if "verbose" in kwargs: |
|
config["verbose"] = kwargs.pop("verbose") |
|
if "memory" in kwargs: |
|
config["memory"] = kwargs.pop("memory") |
|
|
|
|
|
return load_chain_from_config(config, **kwargs) |
|
|