|
"""Chain that takes in an input and produces an action and action input.""" |
|
|
|
from __future__ import annotations |
|
|
|
import asyncio |
|
import json |
|
import logging |
|
import time |
|
from abc import abstractmethod |
|
from pathlib import Path |
|
from typing import ( |
|
Any, |
|
AsyncIterator, |
|
Callable, |
|
Dict, |
|
Iterator, |
|
List, |
|
Optional, |
|
Sequence, |
|
Tuple, |
|
Union, |
|
cast, |
|
) |
|
|
|
import yaml |
|
from langchain_core._api import deprecated |
|
from langchain_core.agents import AgentAction, AgentFinish, AgentStep |
|
from langchain_core.callbacks import ( |
|
AsyncCallbackManagerForChainRun, |
|
AsyncCallbackManagerForToolRun, |
|
BaseCallbackManager, |
|
CallbackManagerForChainRun, |
|
CallbackManagerForToolRun, |
|
Callbacks, |
|
) |
|
from langchain_core.exceptions import OutputParserException |
|
from langchain_core.language_models import BaseLanguageModel |
|
from langchain_core.messages import BaseMessage |
|
from langchain_core.output_parsers import BaseOutputParser |
|
from langchain_core.prompts import BasePromptTemplate |
|
from langchain_core.prompts.few_shot import FewShotPromptTemplate |
|
from langchain_core.prompts.prompt import PromptTemplate |
|
from langchain_core.runnables import Runnable, RunnableConfig, ensure_config |
|
from langchain_core.runnables.utils import AddableDict |
|
from langchain_core.tools import BaseTool |
|
from langchain_core.utils.input import get_color_mapping |
|
from pydantic import BaseModel, ConfigDict, model_validator |
|
from typing_extensions import Self |
|
|
|
from langchain._api.deprecation import AGENT_DEPRECATION_WARNING |
|
from langchain.agents.agent_iterator import AgentExecutorIterator |
|
from langchain.agents.agent_types import AgentType |
|
from langchain.agents.tools import InvalidTool |
|
from langchain.chains.base import Chain |
|
from langchain.chains.llm import LLMChain |
|
from langchain.utilities.asyncio import asyncio_timeout |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class BaseSingleActionAgent(BaseModel): |
|
"""Base Single Action Agent class.""" |
|
|
|
@property |
|
def return_values(self) -> List[str]: |
|
"""Return values of the agent.""" |
|
return ["output"] |
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]: |
|
return None |
|
|
|
@abstractmethod |
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
|
|
@abstractmethod |
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Async given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
|
|
@property |
|
@abstractmethod |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
:meta private: |
|
""" |
|
|
|
def return_stopped_response( |
|
self, |
|
early_stopping_method: str, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
**kwargs: Any, |
|
) -> AgentFinish: |
|
"""Return response when agent has been stopped due to max iterations. |
|
|
|
Args: |
|
early_stopping_method: Method to use for early stopping. |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
AgentFinish: Agent finish object. |
|
|
|
Raises: |
|
ValueError: If `early_stopping_method` is not supported. |
|
""" |
|
if early_stopping_method == "force": |
|
|
|
return AgentFinish( |
|
{"output": "Agent stopped due to iteration limit or time limit."}, "" |
|
) |
|
else: |
|
raise ValueError( |
|
f"Got unsupported early_stopping_method `{early_stopping_method}`" |
|
) |
|
|
|
@classmethod |
|
def from_llm_and_tools( |
|
cls, |
|
llm: BaseLanguageModel, |
|
tools: Sequence[BaseTool], |
|
callback_manager: Optional[BaseCallbackManager] = None, |
|
**kwargs: Any, |
|
) -> BaseSingleActionAgent: |
|
"""Construct an agent from an LLM and tools. |
|
|
|
Args: |
|
llm: Language model to use. |
|
tools: Tools to use. |
|
callback_manager: Callback manager to use. |
|
kwargs: Additional arguments. |
|
|
|
Returns: |
|
BaseSingleActionAgent: Agent object. |
|
""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def _agent_type(self) -> str: |
|
"""Return Identifier of an agent type.""" |
|
raise NotImplementedError |
|
|
|
def dict(self, **kwargs: Any) -> Dict: |
|
"""Return dictionary representation of agent. |
|
|
|
Returns: |
|
Dict: Dictionary representation of agent. |
|
""" |
|
_dict = super().model_dump() |
|
try: |
|
_type = self._agent_type |
|
except NotImplementedError: |
|
_type = None |
|
if isinstance(_type, AgentType): |
|
_dict["_type"] = str(_type.value) |
|
elif _type is not None: |
|
_dict["_type"] = _type |
|
return _dict |
|
|
|
def save(self, file_path: Union[Path, str]) -> None: |
|
"""Save the agent. |
|
|
|
Args: |
|
file_path: Path to file to save the agent to. |
|
|
|
Example: |
|
.. code-block:: python |
|
|
|
# If working with agent executor |
|
agent.agent.save(file_path="path/agent.yaml") |
|
""" |
|
|
|
if isinstance(file_path, str): |
|
save_path = Path(file_path) |
|
else: |
|
save_path = file_path |
|
|
|
directory_path = save_path.parent |
|
directory_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
agent_dict = self.dict() |
|
if "_type" not in agent_dict: |
|
raise NotImplementedError(f"Agent {self} does not support saving") |
|
|
|
if save_path.suffix == ".json": |
|
with open(file_path, "w") as f: |
|
json.dump(agent_dict, f, indent=4) |
|
elif save_path.suffix.endswith((".yaml", ".yml")): |
|
with open(file_path, "w") as f: |
|
yaml.dump(agent_dict, f, default_flow_style=False) |
|
else: |
|
raise ValueError(f"{save_path} must be json or yaml") |
|
|
|
def tool_run_logging_kwargs(self) -> Dict: |
|
"""Return logging kwargs for tool run.""" |
|
return {} |
|
|
|
|
|
class BaseMultiActionAgent(BaseModel): |
|
"""Base Multi Action Agent class.""" |
|
|
|
@property |
|
def return_values(self) -> List[str]: |
|
"""Return values of the agent.""" |
|
return ["output"] |
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]: |
|
"""Get allowed tools. |
|
|
|
Returns: |
|
Optional[List[str]]: Allowed tools. |
|
""" |
|
return None |
|
|
|
@abstractmethod |
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[List[AgentAction], AgentFinish]: |
|
"""Given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with the observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Actions specifying what tool to use. |
|
""" |
|
|
|
@abstractmethod |
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[List[AgentAction], AgentFinish]: |
|
"""Async given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with the observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Actions specifying what tool to use. |
|
""" |
|
|
|
@property |
|
@abstractmethod |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
:meta private: |
|
""" |
|
|
|
def return_stopped_response( |
|
self, |
|
early_stopping_method: str, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
**kwargs: Any, |
|
) -> AgentFinish: |
|
"""Return response when agent has been stopped due to max iterations. |
|
|
|
Args: |
|
early_stopping_method: Method to use for early stopping. |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
AgentFinish: Agent finish object. |
|
|
|
Raises: |
|
ValueError: If `early_stopping_method` is not supported. |
|
""" |
|
if early_stopping_method == "force": |
|
|
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "") |
|
else: |
|
raise ValueError( |
|
f"Got unsupported early_stopping_method `{early_stopping_method}`" |
|
) |
|
|
|
@property |
|
def _agent_type(self) -> str: |
|
"""Return Identifier of an agent type.""" |
|
raise NotImplementedError |
|
|
|
def dict(self, **kwargs: Any) -> Dict: |
|
"""Return dictionary representation of agent.""" |
|
_dict = super().model_dump() |
|
try: |
|
_dict["_type"] = str(self._agent_type) |
|
except NotImplementedError: |
|
pass |
|
return _dict |
|
|
|
def save(self, file_path: Union[Path, str]) -> None: |
|
"""Save the agent. |
|
|
|
Args: |
|
file_path: Path to file to save the agent to. |
|
|
|
Raises: |
|
NotImplementedError: If agent does not support saving. |
|
ValueError: If file_path is not json or yaml. |
|
|
|
Example: |
|
.. code-block:: python |
|
|
|
# If working with agent executor |
|
agent.agent.save(file_path="path/agent.yaml") |
|
""" |
|
|
|
if isinstance(file_path, str): |
|
save_path = Path(file_path) |
|
else: |
|
save_path = file_path |
|
|
|
|
|
agent_dict = self.dict() |
|
if "_type" not in agent_dict: |
|
raise NotImplementedError(f"Agent {self} does not support saving.") |
|
|
|
directory_path = save_path.parent |
|
directory_path.mkdir(parents=True, exist_ok=True) |
|
|
|
if save_path.suffix == ".json": |
|
with open(file_path, "w") as f: |
|
json.dump(agent_dict, f, indent=4) |
|
elif save_path.suffix.endswith((".yaml", ".yml")): |
|
with open(file_path, "w") as f: |
|
yaml.dump(agent_dict, f, default_flow_style=False) |
|
else: |
|
raise ValueError(f"{save_path} must be json or yaml") |
|
|
|
def tool_run_logging_kwargs(self) -> Dict: |
|
"""Return logging kwargs for tool run.""" |
|
|
|
return {} |
|
|
|
|
|
class AgentOutputParser(BaseOutputParser[Union[AgentAction, AgentFinish]]): |
|
"""Base class for parsing agent output into agent action/finish.""" |
|
|
|
@abstractmethod |
|
def parse(self, text: str) -> Union[AgentAction, AgentFinish]: |
|
"""Parse text into agent action/finish.""" |
|
|
|
|
|
class MultiActionAgentOutputParser( |
|
BaseOutputParser[Union[List[AgentAction], AgentFinish]] |
|
): |
|
"""Base class for parsing agent output into agent actions/finish. |
|
|
|
This is used for agents that can return multiple actions. |
|
""" |
|
|
|
@abstractmethod |
|
def parse(self, text: str) -> Union[List[AgentAction], AgentFinish]: |
|
"""Parse text into agent actions/finish. |
|
|
|
Args: |
|
text: Text to parse. |
|
|
|
Returns: |
|
Union[List[AgentAction], AgentFinish]: |
|
List of agent actions or agent finish. |
|
""" |
|
|
|
|
|
class RunnableAgent(BaseSingleActionAgent): |
|
"""Agent powered by Runnables.""" |
|
|
|
runnable: Runnable[dict, Union[AgentAction, AgentFinish]] |
|
"""Runnable to call to get agent action.""" |
|
input_keys_arg: List[str] = [] |
|
return_keys_arg: List[str] = [] |
|
stream_runnable: bool = True |
|
"""Whether to stream from the runnable or not. |
|
|
|
If True then underlying LLM is invoked in a streaming fashion to make it possible |
|
to get access to the individual LLM tokens when using stream_log with the Agent |
|
Executor. If False then LLM is invoked in a non-streaming fashion and |
|
individual LLM tokens will not be available in stream_log. |
|
""" |
|
|
|
model_config = ConfigDict( |
|
arbitrary_types_allowed=True, |
|
) |
|
|
|
@property |
|
def return_values(self) -> List[str]: |
|
"""Return values of the agent.""" |
|
return self.return_keys_arg |
|
|
|
@property |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys.""" |
|
return self.input_keys_arg |
|
|
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Based on past history and current inputs, decide what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with the observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}} |
|
final_output: Any = None |
|
if self.stream_runnable: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for chunk in self.runnable.stream(inputs, config={"callbacks": callbacks}): |
|
if final_output is None: |
|
final_output = chunk |
|
else: |
|
final_output += chunk |
|
else: |
|
final_output = self.runnable.invoke(inputs, config={"callbacks": callbacks}) |
|
|
|
return final_output |
|
|
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[ |
|
AgentAction, |
|
AgentFinish, |
|
]: |
|
"""Async based on past history and current inputs, decide what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}} |
|
final_output: Any = None |
|
if self.stream_runnable: |
|
|
|
|
|
|
|
|
|
|
|
|
|
async for chunk in self.runnable.astream( |
|
inputs, config={"callbacks": callbacks} |
|
): |
|
if final_output is None: |
|
final_output = chunk |
|
else: |
|
final_output += chunk |
|
else: |
|
final_output = await self.runnable.ainvoke( |
|
inputs, config={"callbacks": callbacks} |
|
) |
|
return final_output |
|
|
|
|
|
class RunnableMultiActionAgent(BaseMultiActionAgent): |
|
"""Agent powered by Runnables.""" |
|
|
|
runnable: Runnable[dict, Union[List[AgentAction], AgentFinish]] |
|
"""Runnable to call to get agent actions.""" |
|
input_keys_arg: List[str] = [] |
|
return_keys_arg: List[str] = [] |
|
stream_runnable: bool = True |
|
"""Whether to stream from the runnable or not. |
|
|
|
If True then underlying LLM is invoked in a streaming fashion to make it possible |
|
to get access to the individual LLM tokens when using stream_log with the Agent |
|
Executor. If False then LLM is invoked in a non-streaming fashion and |
|
individual LLM tokens will not be available in stream_log. |
|
""" |
|
|
|
model_config = ConfigDict( |
|
arbitrary_types_allowed=True, |
|
) |
|
|
|
@property |
|
def return_values(self) -> List[str]: |
|
"""Return values of the agent.""" |
|
return self.return_keys_arg |
|
|
|
@property |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
Returns: |
|
List of input keys. |
|
""" |
|
return self.input_keys_arg |
|
|
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[ |
|
List[AgentAction], |
|
AgentFinish, |
|
]: |
|
"""Based on past history and current inputs, decide what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with the observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}} |
|
final_output: Any = None |
|
if self.stream_runnable: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for chunk in self.runnable.stream(inputs, config={"callbacks": callbacks}): |
|
if final_output is None: |
|
final_output = chunk |
|
else: |
|
final_output += chunk |
|
else: |
|
final_output = self.runnable.invoke(inputs, config={"callbacks": callbacks}) |
|
|
|
return final_output |
|
|
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[ |
|
List[AgentAction], |
|
AgentFinish, |
|
]: |
|
"""Async based on past history and current inputs, decide what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}} |
|
final_output: Any = None |
|
if self.stream_runnable: |
|
|
|
|
|
|
|
|
|
|
|
|
|
async for chunk in self.runnable.astream( |
|
inputs, config={"callbacks": callbacks} |
|
): |
|
if final_output is None: |
|
final_output = chunk |
|
else: |
|
final_output += chunk |
|
else: |
|
final_output = await self.runnable.ainvoke( |
|
inputs, config={"callbacks": callbacks} |
|
) |
|
|
|
return final_output |
|
|
|
|
|
@deprecated( |
|
"0.1.0", |
|
message=AGENT_DEPRECATION_WARNING, |
|
removal="1.0", |
|
) |
|
class LLMSingleActionAgent(BaseSingleActionAgent): |
|
"""Base class for single action agents.""" |
|
|
|
llm_chain: LLMChain |
|
"""LLMChain to use for agent.""" |
|
output_parser: AgentOutputParser |
|
"""Output parser to use for agent.""" |
|
stop: List[str] |
|
"""List of strings to stop on.""" |
|
|
|
@property |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
Returns: |
|
List of input keys. |
|
""" |
|
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) |
|
|
|
def dict(self, **kwargs: Any) -> Dict: |
|
"""Return dictionary representation of agent.""" |
|
_dict = super().dict() |
|
del _dict["output_parser"] |
|
return _dict |
|
|
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with the observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
output = self.llm_chain.run( |
|
intermediate_steps=intermediate_steps, |
|
stop=self.stop, |
|
callbacks=callbacks, |
|
**kwargs, |
|
) |
|
return self.output_parser.parse(output) |
|
|
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Async given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
output = await self.llm_chain.arun( |
|
intermediate_steps=intermediate_steps, |
|
stop=self.stop, |
|
callbacks=callbacks, |
|
**kwargs, |
|
) |
|
return self.output_parser.parse(output) |
|
|
|
def tool_run_logging_kwargs(self) -> Dict: |
|
"""Return logging kwargs for tool run.""" |
|
return { |
|
"llm_prefix": "", |
|
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0], |
|
} |
|
|
|
|
|
@deprecated( |
|
"0.1.0", |
|
message=AGENT_DEPRECATION_WARNING, |
|
removal="1.0", |
|
) |
|
class Agent(BaseSingleActionAgent): |
|
"""Agent that calls the language model and deciding the action. |
|
|
|
This is driven by a LLMChain. The prompt in the LLMChain MUST include |
|
a variable called "agent_scratchpad" where the agent can put its |
|
intermediary work. |
|
""" |
|
|
|
llm_chain: LLMChain |
|
"""LLMChain to use for agent.""" |
|
output_parser: AgentOutputParser |
|
"""Output parser to use for agent.""" |
|
allowed_tools: Optional[List[str]] = None |
|
"""Allowed tools for the agent. If None, all tools are allowed.""" |
|
|
|
def dict(self, **kwargs: Any) -> Dict: |
|
"""Return dictionary representation of agent.""" |
|
_dict = super().dict() |
|
del _dict["output_parser"] |
|
return _dict |
|
|
|
def get_allowed_tools(self) -> Optional[List[str]]: |
|
"""Get allowed tools.""" |
|
return self.allowed_tools |
|
|
|
@property |
|
def return_values(self) -> List[str]: |
|
"""Return values of the agent.""" |
|
return ["output"] |
|
|
|
def _fix_text(self, text: str) -> str: |
|
"""Fix the text. |
|
|
|
Args: |
|
text: Text to fix. |
|
|
|
Returns: |
|
str: Fixed text. |
|
""" |
|
raise ValueError("fix_text not implemented for this agent.") |
|
|
|
@property |
|
def _stop(self) -> List[str]: |
|
return [ |
|
f"\n{self.observation_prefix.rstrip()}", |
|
f"\n\t{self.observation_prefix.rstrip()}", |
|
] |
|
|
|
def _construct_scratchpad( |
|
self, intermediate_steps: List[Tuple[AgentAction, str]] |
|
) -> Union[str, List[BaseMessage]]: |
|
"""Construct the scratchpad that lets the agent continue its thought process.""" |
|
thoughts = "" |
|
for action, observation in intermediate_steps: |
|
thoughts += action.log |
|
thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" |
|
return thoughts |
|
|
|
def plan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) |
|
full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) |
|
return self.output_parser.parse(full_output) |
|
|
|
async def aplan( |
|
self, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> Union[AgentAction, AgentFinish]: |
|
"""Async given input, decided what to do. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
callbacks: Callbacks to run. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Action specifying what tool to use. |
|
""" |
|
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) |
|
full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) |
|
agent_output = await self.output_parser.aparse(full_output) |
|
return agent_output |
|
|
|
def get_full_inputs( |
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any |
|
) -> Dict[str, Any]: |
|
"""Create the full inputs for the LLMChain from intermediate steps. |
|
|
|
Args: |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
Dict[str, Any]: Full inputs for the LLMChain. |
|
""" |
|
thoughts = self._construct_scratchpad(intermediate_steps) |
|
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} |
|
full_inputs = {**kwargs, **new_inputs} |
|
return full_inputs |
|
|
|
@property |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
:meta private: |
|
""" |
|
return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) |
|
|
|
@model_validator(mode="after") |
|
def validate_prompt(self) -> Self: |
|
"""Validate that prompt matches format. |
|
|
|
Args: |
|
values: Values to validate. |
|
|
|
Returns: |
|
Dict: Validated values. |
|
|
|
Raises: |
|
ValueError: If `agent_scratchpad` is not in prompt.input_variables |
|
and prompt is not a FewShotPromptTemplate or a PromptTemplate. |
|
""" |
|
prompt = self.llm_chain.prompt |
|
if "agent_scratchpad" not in prompt.input_variables: |
|
logger.warning( |
|
"`agent_scratchpad` should be a variable in prompt.input_variables." |
|
" Did not find it, so adding it at the end." |
|
) |
|
prompt.input_variables.append("agent_scratchpad") |
|
if isinstance(prompt, PromptTemplate): |
|
prompt.template += "\n{agent_scratchpad}" |
|
elif isinstance(prompt, FewShotPromptTemplate): |
|
prompt.suffix += "\n{agent_scratchpad}" |
|
else: |
|
raise ValueError(f"Got unexpected prompt type {type(prompt)}") |
|
return self |
|
|
|
@property |
|
@abstractmethod |
|
def observation_prefix(self) -> str: |
|
"""Prefix to append the observation with.""" |
|
|
|
@property |
|
@abstractmethod |
|
def llm_prefix(self) -> str: |
|
"""Prefix to append the LLM call with.""" |
|
|
|
@classmethod |
|
@abstractmethod |
|
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: |
|
"""Create a prompt for this class. |
|
|
|
Args: |
|
tools: Tools to use. |
|
|
|
Returns: |
|
BasePromptTemplate: Prompt template. |
|
""" |
|
|
|
@classmethod |
|
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: |
|
"""Validate that appropriate tools are passed in. |
|
|
|
Args: |
|
tools: Tools to use. |
|
""" |
|
|
|
pass |
|
|
|
@classmethod |
|
@abstractmethod |
|
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: |
|
"""Get default output parser for this class.""" |
|
|
|
@classmethod |
|
def from_llm_and_tools( |
|
cls, |
|
llm: BaseLanguageModel, |
|
tools: Sequence[BaseTool], |
|
callback_manager: Optional[BaseCallbackManager] = None, |
|
output_parser: Optional[AgentOutputParser] = None, |
|
**kwargs: Any, |
|
) -> Agent: |
|
"""Construct an agent from an LLM and tools. |
|
|
|
Args: |
|
llm: Language model to use. |
|
tools: Tools to use. |
|
callback_manager: Callback manager to use. |
|
output_parser: Output parser to use. |
|
kwargs: Additional arguments. |
|
|
|
Returns: |
|
Agent: Agent object. |
|
""" |
|
cls._validate_tools(tools) |
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=cls.create_prompt(tools), |
|
callback_manager=callback_manager, |
|
) |
|
tool_names = [tool.name for tool in tools] |
|
_output_parser = output_parser or cls._get_default_output_parser() |
|
return cls( |
|
llm_chain=llm_chain, |
|
allowed_tools=tool_names, |
|
output_parser=_output_parser, |
|
**kwargs, |
|
) |
|
|
|
def return_stopped_response( |
|
self, |
|
early_stopping_method: str, |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
**kwargs: Any, |
|
) -> AgentFinish: |
|
"""Return response when agent has been stopped due to max iterations. |
|
|
|
Args: |
|
early_stopping_method: Method to use for early stopping. |
|
intermediate_steps: Steps the LLM has taken to date, |
|
along with observations. |
|
**kwargs: User inputs. |
|
|
|
Returns: |
|
AgentFinish: Agent finish object. |
|
|
|
Raises: |
|
ValueError: If `early_stopping_method` is not in ['force', 'generate']. |
|
""" |
|
if early_stopping_method == "force": |
|
|
|
return AgentFinish( |
|
{"output": "Agent stopped due to iteration limit or time limit."}, "" |
|
) |
|
elif early_stopping_method == "generate": |
|
|
|
thoughts = "" |
|
for action, observation in intermediate_steps: |
|
thoughts += action.log |
|
thoughts += ( |
|
f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" |
|
) |
|
|
|
thoughts += ( |
|
"\n\nI now need to return a final answer based on the previous steps:" |
|
) |
|
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} |
|
full_inputs = {**kwargs, **new_inputs} |
|
full_output = self.llm_chain.predict(**full_inputs) |
|
|
|
parsed_output = self.output_parser.parse(full_output) |
|
if isinstance(parsed_output, AgentFinish): |
|
|
|
return parsed_output |
|
else: |
|
|
|
|
|
return AgentFinish({"output": full_output}, full_output) |
|
else: |
|
raise ValueError( |
|
"early_stopping_method should be one of `force` or `generate`, " |
|
f"got {early_stopping_method}" |
|
) |
|
|
|
def tool_run_logging_kwargs(self) -> Dict: |
|
"""Return logging kwargs for tool run.""" |
|
return { |
|
"llm_prefix": self.llm_prefix, |
|
"observation_prefix": self.observation_prefix, |
|
} |
|
|
|
|
|
class ExceptionTool(BaseTool): |
|
"""Tool that just returns the query.""" |
|
|
|
name: str = "_Exception" |
|
"""Name of the tool.""" |
|
description: str = "Exception tool" |
|
"""Description of the tool.""" |
|
|
|
def _run( |
|
self, |
|
query: str, |
|
run_manager: Optional[CallbackManagerForToolRun] = None, |
|
) -> str: |
|
return query |
|
|
|
async def _arun( |
|
self, |
|
query: str, |
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None, |
|
) -> str: |
|
return query |
|
|
|
|
|
NextStepOutput = List[Union[AgentFinish, AgentAction, AgentStep]] |
|
RunnableAgentType = Union[RunnableAgent, RunnableMultiActionAgent] |
|
|
|
|
|
class AgentExecutor(Chain): |
|
"""Agent that is using tools.""" |
|
|
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent, Runnable] |
|
"""The agent to run for creating a plan and determining actions |
|
to take at each step of the execution loop.""" |
|
tools: Sequence[BaseTool] |
|
"""The valid tools the agent can call.""" |
|
return_intermediate_steps: bool = False |
|
"""Whether to return the agent's trajectory of intermediate steps |
|
at the end in addition to the final output.""" |
|
max_iterations: Optional[int] = 15 |
|
"""The maximum number of steps to take before ending the execution |
|
loop. |
|
|
|
Setting to 'None' could lead to an infinite loop.""" |
|
max_execution_time: Optional[float] = None |
|
"""The maximum amount of wall clock time to spend in the execution |
|
loop. |
|
""" |
|
early_stopping_method: str = "force" |
|
"""The method to use for early stopping if the agent never |
|
returns `AgentFinish`. Either 'force' or 'generate'. |
|
|
|
`"force"` returns a string saying that it stopped because it met a |
|
time or iteration limit. |
|
|
|
`"generate"` calls the agent's LLM Chain one final time to generate |
|
a final answer based on the previous steps. |
|
""" |
|
handle_parsing_errors: Union[bool, str, Callable[[OutputParserException], str]] = ( |
|
False |
|
) |
|
"""How to handle errors raised by the agent's output parser. |
|
Defaults to `False`, which raises the error. |
|
If `true`, the error will be sent back to the LLM as an observation. |
|
If a string, the string itself will be sent to the LLM as an observation. |
|
If a callable function, the function will be called with the exception |
|
as an argument, and the result of that function will be passed to the agent |
|
as an observation. |
|
""" |
|
trim_intermediate_steps: Union[ |
|
int, Callable[[List[Tuple[AgentAction, str]]], List[Tuple[AgentAction, str]]] |
|
] = -1 |
|
"""How to trim the intermediate steps before returning them. |
|
Defaults to -1, which means no trimming. |
|
""" |
|
|
|
@classmethod |
|
def from_agent_and_tools( |
|
cls, |
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent, Runnable], |
|
tools: Sequence[BaseTool], |
|
callbacks: Callbacks = None, |
|
**kwargs: Any, |
|
) -> AgentExecutor: |
|
"""Create from agent and tools. |
|
|
|
Args: |
|
agent: Agent to use. |
|
tools: Tools to use. |
|
callbacks: Callbacks to use. |
|
kwargs: Additional arguments. |
|
|
|
Returns: |
|
AgentExecutor: Agent executor object. |
|
""" |
|
return cls( |
|
agent=agent, |
|
tools=tools, |
|
callbacks=callbacks, |
|
**kwargs, |
|
) |
|
|
|
@model_validator(mode="after") |
|
def validate_tools(self) -> Self: |
|
"""Validate that tools are compatible with agent. |
|
|
|
Args: |
|
values: Values to validate. |
|
|
|
Returns: |
|
Dict: Validated values. |
|
|
|
Raises: |
|
ValueError: If allowed tools are different than provided tools. |
|
""" |
|
agent = self.agent |
|
tools = self.tools |
|
allowed_tools = agent.get_allowed_tools() |
|
if allowed_tools is not None: |
|
if set(allowed_tools) != set([tool.name for tool in tools]): |
|
raise ValueError( |
|
f"Allowed tools ({allowed_tools}) different than " |
|
f"provided tools ({[tool.name for tool in tools]})" |
|
) |
|
return self |
|
|
|
@model_validator(mode="before") |
|
@classmethod |
|
def validate_runnable_agent(cls, values: Dict) -> Any: |
|
"""Convert runnable to agent if passed in. |
|
|
|
Args: |
|
values: Values to validate. |
|
|
|
Returns: |
|
Dict: Validated values. |
|
""" |
|
agent = values.get("agent") |
|
if agent and isinstance(agent, Runnable): |
|
try: |
|
output_type = agent.OutputType |
|
except Exception as _: |
|
multi_action = False |
|
else: |
|
multi_action = output_type == Union[List[AgentAction], AgentFinish] |
|
|
|
stream_runnable = values.pop("stream_runnable", True) |
|
if multi_action: |
|
values["agent"] = RunnableMultiActionAgent( |
|
runnable=agent, stream_runnable=stream_runnable |
|
) |
|
else: |
|
values["agent"] = RunnableAgent( |
|
runnable=agent, stream_runnable=stream_runnable |
|
) |
|
return values |
|
|
|
@property |
|
def _action_agent(self) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]: |
|
"""Type cast self.agent. |
|
|
|
If the `agent` attribute is a Runnable, it will be converted one of |
|
RunnableAgentType in the validate_runnable_agent root_validator. |
|
|
|
To support instantiating with a Runnable, here we explicitly cast the type |
|
to reflect the changes made in the root_validator. |
|
""" |
|
if isinstance(self.agent, Runnable): |
|
return cast(RunnableAgentType, self.agent) |
|
else: |
|
return self.agent |
|
|
|
def save(self, file_path: Union[Path, str]) -> None: |
|
"""Raise error - saving not supported for Agent Executors. |
|
|
|
Args: |
|
file_path: Path to save to. |
|
|
|
Raises: |
|
ValueError: Saving not supported for agent executors. |
|
""" |
|
raise ValueError( |
|
"Saving not supported for agent executors. " |
|
"If you are trying to save the agent, please use the " |
|
"`.save_agent(...)`" |
|
) |
|
|
|
def save_agent(self, file_path: Union[Path, str]) -> None: |
|
"""Save the underlying agent. |
|
|
|
Args: |
|
file_path: Path to save to. |
|
""" |
|
return self._action_agent.save(file_path) |
|
|
|
def iter( |
|
self, |
|
inputs: Any, |
|
callbacks: Callbacks = None, |
|
*, |
|
include_run_info: bool = False, |
|
async_: bool = False, |
|
) -> AgentExecutorIterator: |
|
"""Enables iteration over steps taken to reach final output. |
|
|
|
Args: |
|
inputs: Inputs to the agent. |
|
callbacks: Callbacks to run. |
|
include_run_info: Whether to include run info. |
|
async_: Whether to run async. (Ignored) |
|
|
|
Returns: |
|
AgentExecutorIterator: Agent executor iterator object. |
|
""" |
|
return AgentExecutorIterator( |
|
self, |
|
inputs, |
|
callbacks, |
|
tags=self.tags, |
|
include_run_info=include_run_info, |
|
) |
|
|
|
@property |
|
def input_keys(self) -> List[str]: |
|
"""Return the input keys. |
|
|
|
:meta private: |
|
""" |
|
return self._action_agent.input_keys |
|
|
|
@property |
|
def output_keys(self) -> List[str]: |
|
"""Return the singular output key. |
|
|
|
:meta private: |
|
""" |
|
if self.return_intermediate_steps: |
|
return self._action_agent.return_values + ["intermediate_steps"] |
|
else: |
|
return self._action_agent.return_values |
|
|
|
def lookup_tool(self, name: str) -> BaseTool: |
|
"""Lookup tool by name. |
|
|
|
Args: |
|
name: Name of tool. |
|
|
|
Returns: |
|
BaseTool: Tool object. |
|
""" |
|
return {tool.name: tool for tool in self.tools}[name] |
|
|
|
def _should_continue(self, iterations: int, time_elapsed: float) -> bool: |
|
if self.max_iterations is not None and iterations >= self.max_iterations: |
|
return False |
|
if ( |
|
self.max_execution_time is not None |
|
and time_elapsed >= self.max_execution_time |
|
): |
|
return False |
|
|
|
return True |
|
|
|
def _return( |
|
self, |
|
output: AgentFinish, |
|
intermediate_steps: list, |
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
) -> Dict[str, Any]: |
|
if run_manager: |
|
run_manager.on_agent_finish(output, color="green", verbose=self.verbose) |
|
final_output = output.return_values |
|
if self.return_intermediate_steps: |
|
final_output["intermediate_steps"] = intermediate_steps |
|
return final_output |
|
|
|
async def _areturn( |
|
self, |
|
output: AgentFinish, |
|
intermediate_steps: list, |
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
) -> Dict[str, Any]: |
|
if run_manager: |
|
await run_manager.on_agent_finish( |
|
output, color="green", verbose=self.verbose |
|
) |
|
final_output = output.return_values |
|
if self.return_intermediate_steps: |
|
final_output["intermediate_steps"] = intermediate_steps |
|
return final_output |
|
|
|
def _consume_next_step( |
|
self, values: NextStepOutput |
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: |
|
if isinstance(values[-1], AgentFinish): |
|
assert len(values) == 1 |
|
return values[-1] |
|
else: |
|
return [ |
|
(a.action, a.observation) for a in values if isinstance(a, AgentStep) |
|
] |
|
|
|
def _take_next_step( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
inputs: Dict[str, str], |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: |
|
return self._consume_next_step( |
|
[ |
|
a |
|
for a in self._iter_next_step( |
|
name_to_tool_map, |
|
color_mapping, |
|
inputs, |
|
intermediate_steps, |
|
run_manager, |
|
) |
|
] |
|
) |
|
|
|
def _iter_next_step( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
inputs: Dict[str, str], |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]: |
|
"""Take a single step in the thought-action-observation loop. |
|
|
|
Override this to take control of how the agent makes and acts on choices. |
|
""" |
|
try: |
|
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps) |
|
|
|
|
|
output = self._action_agent.plan( |
|
intermediate_steps, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**inputs, |
|
) |
|
except OutputParserException as e: |
|
if isinstance(self.handle_parsing_errors, bool): |
|
raise_error = not self.handle_parsing_errors |
|
else: |
|
raise_error = False |
|
if raise_error: |
|
raise ValueError( |
|
"An output parsing error occurred. " |
|
"In order to pass this error back to the agent and have it try " |
|
"again, pass `handle_parsing_errors=True` to the AgentExecutor. " |
|
f"This is the error: {str(e)}" |
|
) |
|
text = str(e) |
|
if isinstance(self.handle_parsing_errors, bool): |
|
if e.send_to_llm: |
|
observation = str(e.observation) |
|
text = str(e.llm_output) |
|
else: |
|
observation = "Invalid or incomplete response" |
|
elif isinstance(self.handle_parsing_errors, str): |
|
observation = self.handle_parsing_errors |
|
elif callable(self.handle_parsing_errors): |
|
observation = self.handle_parsing_errors(e) |
|
else: |
|
raise ValueError("Got unexpected type of `handle_parsing_errors`") |
|
output = AgentAction("_Exception", observation, text) |
|
if run_manager: |
|
run_manager.on_agent_action(output, color="green") |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
observation = ExceptionTool().run( |
|
output.tool_input, |
|
verbose=self.verbose, |
|
color=None, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
yield AgentStep(action=output, observation=observation) |
|
return |
|
|
|
|
|
if isinstance(output, AgentFinish): |
|
yield output |
|
return |
|
|
|
actions: List[AgentAction] |
|
if isinstance(output, AgentAction): |
|
actions = [output] |
|
else: |
|
actions = output |
|
for agent_action in actions: |
|
yield agent_action |
|
for agent_action in actions: |
|
yield self._perform_agent_action( |
|
name_to_tool_map, color_mapping, agent_action, run_manager |
|
) |
|
|
|
def _perform_agent_action( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
agent_action: AgentAction, |
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
) -> AgentStep: |
|
if run_manager: |
|
run_manager.on_agent_action(agent_action, color="green") |
|
|
|
if agent_action.tool in name_to_tool_map: |
|
tool = name_to_tool_map[agent_action.tool] |
|
return_direct = tool.return_direct |
|
color = color_mapping[agent_action.tool] |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
if return_direct: |
|
tool_run_kwargs["llm_prefix"] = "" |
|
|
|
observation = tool.run( |
|
agent_action.tool_input, |
|
verbose=self.verbose, |
|
color=color, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
else: |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
observation = InvalidTool().run( |
|
{ |
|
"requested_tool_name": agent_action.tool, |
|
"available_tool_names": list(name_to_tool_map.keys()), |
|
}, |
|
verbose=self.verbose, |
|
color=None, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
return AgentStep(action=agent_action, observation=observation) |
|
|
|
async def _atake_next_step( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
inputs: Dict[str, str], |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: |
|
return self._consume_next_step( |
|
[ |
|
a |
|
async for a in self._aiter_next_step( |
|
name_to_tool_map, |
|
color_mapping, |
|
inputs, |
|
intermediate_steps, |
|
run_manager, |
|
) |
|
] |
|
) |
|
|
|
async def _aiter_next_step( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
inputs: Dict[str, str], |
|
intermediate_steps: List[Tuple[AgentAction, str]], |
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
) -> AsyncIterator[Union[AgentFinish, AgentAction, AgentStep]]: |
|
"""Take a single step in the thought-action-observation loop. |
|
|
|
Override this to take control of how the agent makes and acts on choices. |
|
""" |
|
try: |
|
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps) |
|
|
|
|
|
output = await self._action_agent.aplan( |
|
intermediate_steps, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**inputs, |
|
) |
|
except OutputParserException as e: |
|
if isinstance(self.handle_parsing_errors, bool): |
|
raise_error = not self.handle_parsing_errors |
|
else: |
|
raise_error = False |
|
if raise_error: |
|
raise ValueError( |
|
"An output parsing error occurred. " |
|
"In order to pass this error back to the agent and have it try " |
|
"again, pass `handle_parsing_errors=True` to the AgentExecutor. " |
|
f"This is the error: {str(e)}" |
|
) |
|
text = str(e) |
|
if isinstance(self.handle_parsing_errors, bool): |
|
if e.send_to_llm: |
|
observation = str(e.observation) |
|
text = str(e.llm_output) |
|
else: |
|
observation = "Invalid or incomplete response" |
|
elif isinstance(self.handle_parsing_errors, str): |
|
observation = self.handle_parsing_errors |
|
elif callable(self.handle_parsing_errors): |
|
observation = self.handle_parsing_errors(e) |
|
else: |
|
raise ValueError("Got unexpected type of `handle_parsing_errors`") |
|
output = AgentAction("_Exception", observation, text) |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
observation = await ExceptionTool().arun( |
|
output.tool_input, |
|
verbose=self.verbose, |
|
color=None, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
yield AgentStep(action=output, observation=observation) |
|
return |
|
|
|
|
|
if isinstance(output, AgentFinish): |
|
yield output |
|
return |
|
|
|
actions: List[AgentAction] |
|
if isinstance(output, AgentAction): |
|
actions = [output] |
|
else: |
|
actions = output |
|
for agent_action in actions: |
|
yield agent_action |
|
|
|
|
|
result = await asyncio.gather( |
|
*[ |
|
self._aperform_agent_action( |
|
name_to_tool_map, color_mapping, agent_action, run_manager |
|
) |
|
for agent_action in actions |
|
], |
|
) |
|
|
|
|
|
for chunk in result: |
|
yield chunk |
|
|
|
async def _aperform_agent_action( |
|
self, |
|
name_to_tool_map: Dict[str, BaseTool], |
|
color_mapping: Dict[str, str], |
|
agent_action: AgentAction, |
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
) -> AgentStep: |
|
if run_manager: |
|
await run_manager.on_agent_action( |
|
agent_action, verbose=self.verbose, color="green" |
|
) |
|
|
|
if agent_action.tool in name_to_tool_map: |
|
tool = name_to_tool_map[agent_action.tool] |
|
return_direct = tool.return_direct |
|
color = color_mapping[agent_action.tool] |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
if return_direct: |
|
tool_run_kwargs["llm_prefix"] = "" |
|
|
|
observation = await tool.arun( |
|
agent_action.tool_input, |
|
verbose=self.verbose, |
|
color=color, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
else: |
|
tool_run_kwargs = self._action_agent.tool_run_logging_kwargs() |
|
observation = await InvalidTool().arun( |
|
{ |
|
"requested_tool_name": agent_action.tool, |
|
"available_tool_names": list(name_to_tool_map.keys()), |
|
}, |
|
verbose=self.verbose, |
|
color=None, |
|
callbacks=run_manager.get_child() if run_manager else None, |
|
**tool_run_kwargs, |
|
) |
|
return AgentStep(action=agent_action, observation=observation) |
|
|
|
def _call( |
|
self, |
|
inputs: Dict[str, str], |
|
run_manager: Optional[CallbackManagerForChainRun] = None, |
|
) -> Dict[str, Any]: |
|
"""Run text through and get agent response.""" |
|
|
|
name_to_tool_map = {tool.name: tool for tool in self.tools} |
|
|
|
color_mapping = get_color_mapping( |
|
[tool.name for tool in self.tools], excluded_colors=["green", "red"] |
|
) |
|
intermediate_steps: List[Tuple[AgentAction, str]] = [] |
|
|
|
iterations = 0 |
|
time_elapsed = 0.0 |
|
start_time = time.time() |
|
|
|
while self._should_continue(iterations, time_elapsed): |
|
next_step_output = self._take_next_step( |
|
name_to_tool_map, |
|
color_mapping, |
|
inputs, |
|
intermediate_steps, |
|
run_manager=run_manager, |
|
) |
|
if isinstance(next_step_output, AgentFinish): |
|
return self._return( |
|
next_step_output, intermediate_steps, run_manager=run_manager |
|
) |
|
|
|
intermediate_steps.extend(next_step_output) |
|
if len(next_step_output) == 1: |
|
next_step_action = next_step_output[0] |
|
|
|
tool_return = self._get_tool_return(next_step_action) |
|
if tool_return is not None: |
|
return self._return( |
|
tool_return, intermediate_steps, run_manager=run_manager |
|
) |
|
iterations += 1 |
|
time_elapsed = time.time() - start_time |
|
output = self._action_agent.return_stopped_response( |
|
self.early_stopping_method, intermediate_steps, **inputs |
|
) |
|
return self._return(output, intermediate_steps, run_manager=run_manager) |
|
|
|
async def _acall( |
|
self, |
|
inputs: Dict[str, str], |
|
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, |
|
) -> Dict[str, str]: |
|
"""Async run text through and get agent response.""" |
|
|
|
name_to_tool_map = {tool.name: tool for tool in self.tools} |
|
|
|
color_mapping = get_color_mapping( |
|
[tool.name for tool in self.tools], excluded_colors=["green"] |
|
) |
|
intermediate_steps: List[Tuple[AgentAction, str]] = [] |
|
|
|
iterations = 0 |
|
time_elapsed = 0.0 |
|
start_time = time.time() |
|
|
|
try: |
|
async with asyncio_timeout(self.max_execution_time): |
|
while self._should_continue(iterations, time_elapsed): |
|
next_step_output = await self._atake_next_step( |
|
name_to_tool_map, |
|
color_mapping, |
|
inputs, |
|
intermediate_steps, |
|
run_manager=run_manager, |
|
) |
|
if isinstance(next_step_output, AgentFinish): |
|
return await self._areturn( |
|
next_step_output, |
|
intermediate_steps, |
|
run_manager=run_manager, |
|
) |
|
|
|
intermediate_steps.extend(next_step_output) |
|
if len(next_step_output) == 1: |
|
next_step_action = next_step_output[0] |
|
|
|
tool_return = self._get_tool_return(next_step_action) |
|
if tool_return is not None: |
|
return await self._areturn( |
|
tool_return, intermediate_steps, run_manager=run_manager |
|
) |
|
|
|
iterations += 1 |
|
time_elapsed = time.time() - start_time |
|
output = self._action_agent.return_stopped_response( |
|
self.early_stopping_method, intermediate_steps, **inputs |
|
) |
|
return await self._areturn( |
|
output, intermediate_steps, run_manager=run_manager |
|
) |
|
except (TimeoutError, asyncio.TimeoutError): |
|
|
|
output = self._action_agent.return_stopped_response( |
|
self.early_stopping_method, intermediate_steps, **inputs |
|
) |
|
return await self._areturn( |
|
output, intermediate_steps, run_manager=run_manager |
|
) |
|
|
|
def _get_tool_return( |
|
self, next_step_output: Tuple[AgentAction, str] |
|
) -> Optional[AgentFinish]: |
|
"""Check if the tool is a returning tool.""" |
|
agent_action, observation = next_step_output |
|
name_to_tool_map = {tool.name: tool for tool in self.tools} |
|
return_value_key = "output" |
|
if len(self._action_agent.return_values) > 0: |
|
return_value_key = self._action_agent.return_values[0] |
|
|
|
if agent_action.tool in name_to_tool_map: |
|
if name_to_tool_map[agent_action.tool].return_direct: |
|
return AgentFinish( |
|
{return_value_key: observation}, |
|
"", |
|
) |
|
return None |
|
|
|
def _prepare_intermediate_steps( |
|
self, intermediate_steps: List[Tuple[AgentAction, str]] |
|
) -> List[Tuple[AgentAction, str]]: |
|
if ( |
|
isinstance(self.trim_intermediate_steps, int) |
|
and self.trim_intermediate_steps > 0 |
|
): |
|
return intermediate_steps[-self.trim_intermediate_steps :] |
|
elif callable(self.trim_intermediate_steps): |
|
return self.trim_intermediate_steps(intermediate_steps) |
|
else: |
|
return intermediate_steps |
|
|
|
def stream( |
|
self, |
|
input: Union[Dict[str, Any], Any], |
|
config: Optional[RunnableConfig] = None, |
|
**kwargs: Any, |
|
) -> Iterator[AddableDict]: |
|
"""Enables streaming over steps taken to reach final output. |
|
|
|
Args: |
|
input: Input to the agent. |
|
config: Config to use. |
|
kwargs: Additional arguments. |
|
|
|
Yields: |
|
AddableDict: Addable dictionary. |
|
""" |
|
config = ensure_config(config) |
|
iterator = AgentExecutorIterator( |
|
self, |
|
input, |
|
config.get("callbacks"), |
|
tags=config.get("tags"), |
|
metadata=config.get("metadata"), |
|
run_name=config.get("run_name"), |
|
run_id=config.get("run_id"), |
|
yield_actions=True, |
|
**kwargs, |
|
) |
|
for step in iterator: |
|
yield step |
|
|
|
async def astream( |
|
self, |
|
input: Union[Dict[str, Any], Any], |
|
config: Optional[RunnableConfig] = None, |
|
**kwargs: Any, |
|
) -> AsyncIterator[AddableDict]: |
|
"""Async enables streaming over steps taken to reach final output. |
|
|
|
Args: |
|
input: Input to the agent. |
|
config: Config to use. |
|
kwargs: Additional arguments. |
|
|
|
Yields: |
|
AddableDict: Addable dictionary. |
|
""" |
|
|
|
config = ensure_config(config) |
|
iterator = AgentExecutorIterator( |
|
self, |
|
input, |
|
config.get("callbacks"), |
|
tags=config.get("tags"), |
|
metadata=config.get("metadata"), |
|
run_name=config.get("run_name"), |
|
run_id=config.get("run_id"), |
|
yield_actions=True, |
|
**kwargs, |
|
) |
|
async for step in iterator: |
|
yield step |
|
|