Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 255.95 +/- 22.62
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79338eaa4180>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79338eaa4220>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79338eaa42c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79338eaa4360>", "_build": "<function ActorCriticPolicy._build at 0x79338eaa4400>", "forward": "<function ActorCriticPolicy.forward at 0x79338eaa44a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79338eaa4540>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79338eaa45e0>", "_predict": "<function ActorCriticPolicy._predict at 0x79338eaa4680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79338eaa4720>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79338eaa47c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79338eaa4860>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79338ea11c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739028621354697763, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHZvVL4EYo0/XeDavhDfyL4spqy+zl/SvQAAAAAAAAAA+otpPorkpj+zZcw+vb72vkP3nz6HWYm9AAAAAAAAAAAAl2I9PCqEP5sa0zziWrC+OwOCPcfLTL0AAAAAAAAAADOGIT1+mcY9KgYWvmHdRL6itIK8/qVZPQAAAAAAAAAAzb+vvTsdQD/zRp08l469vo0Xi70m4im6AAAAAAAAAACNP0u+KAPvvL4jATmk7bQ3EuFRPvWNNLgAAIA/AACAPzOpsj27/Do/mGl3vfuej76OySo9G+dNvAAAAAAAAAAAAHHOPO1/bj5K7Wm+u/1tvlN36ryIWsO8AAAAAAAAAACaLbS9SAaLPwbZr70ebdS+dHjrvW1mbzwAAAAAAAAAAF0XjL4pI6I//qTCvk53yb5gZLm+gYu6vQAAAAAAAAAAM9+1O5Ynnj+66lo7HYDBvqXFZbxGXSW8AAAAAAAAAAAtqQ4+37o8P4j0TbvzibW+OwPDPBPu/70AAAAAAAAAAHMMwb2uBai6/aDrtjVD57EdETK6sVQGNgAAgD8AAAAAgLZdPlNEVD8zpk29HKi4vr8JyD1mrda8AAAAAAAAAAAgI0o+ZwI4P886JL4vaqi+h56NPQktkL0AAAAAAAAAALNLYb3YLLw90FQPPsXyh760F109H8W0vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHZOtr9ETiMAWyUS/mMAXSUR0Cf9jErGza9dX2UKGgGR0BwS/KxLTQWaAdNJgFoCEdAn/annZCfH3V9lChoBkdAcL4P07KaHGgHTR8BaAhHQJ/3N+nZTQ51fZQoaAZHQG/MrzwtrbhoB005AWgIR0Cf92ZVn27GdX2UKGgGR0BwT7sPatcOaAdNIwFoCEdAn/exTS9dvHV9lChoBkdAcTtg0TDfnGgHTZ8BaAhHQJ/4prYXfqJ1fZQoaAZHQGDdE0aZQYVoB03oA2gIR0Cf+S+z+m3wdX2UKGgGR0Bx0PqW1MM7aAdNFAFoCEdAn/ofIGQjlnV9lChoBkdAb8w8yvcJt2gHS/xoCEdAn/q1oxpL3HV9lChoBkdAbLQdz4k/r2gHTSEBaAhHQJ/7K3VkMCt1fZQoaAZHQHLZ6rJbMX9oB0v+aAhHQJ/7ZVPva111fZQoaAZHQHAMwGjbi6xoB00mAWgIR0Cf+43cYZVGdX2UKGgGR0BxMhYxL0z1aAdNOQFoCEdAn/yJ1FH8THV9lChoBkdAbWpNfw7T2GgHTRMBaAhHQJ/8rHPu5SZ1fZQoaAZHQG4NQpnYg7poB00kAWgIR0Cf/mrAxi5NdX2UKGgGR0By5ks+V1OkaAdNJAFoCEdAn/7Uk0JnhHV9lChoBkdAcmWAood+5WgHTSQBaAhHQJ//QAggX/J1fZQoaAZHQHABy0Sh8IBoB00NAWgIR0Cf/5fXwsoVdX2UKGgGR0Busv+qBEroaAdNJAFoCEdAn//GhAWznnV9lChoBkdAcXirVe8f3mgHTSMBaAhHQJ//6KWLP2R1fZQoaAZHQG9aJ2dNFjNoB00HAWgIR0CgACZ9E1EWdX2UKGgGR0Bx03Roh6jWaAdNCAFoCEdAoABiV6eGwnV9lChoBkdAcXG3+MqBmWgHS/poCEdAoACnPkaMrHV9lChoBkdAcMSIQvpQlGgHTQMBaAhHQKABCCTUy591fZQoaAZHQGznC+lCTlloB00VAWgIR0CgAX+UILPVdX2UKGgGR0BvchtHhCMQaAdNEwFoCEdAoAGU8/2TPnV9lChoBkdAbVrczqKP4mgHTR4BaAhHQKABzm0VrRB1fZQoaAZHQHMLcDSw4bVoB00OAWgIR0CgAx+MqBmPdX2UKGgGR0BxN8qH446waAdNDgFoCEdAoAOf0Eovz3V9lChoBkdAb5Y+dsi0OWgHTXABaAhHQKADyLjPv8Z1fZQoaAZHQHGIYHgP3BZoB00qAWgIR0CgA95DZ13ddX2UKGgGR0Bx/+2Xsw+MaAdNewFoCEdAoAQLUd7v5XV9lChoBkdAcXyNTtLL6mgHTR8BaAhHQKAENdrwe/51fZQoaAZHQHCNxMSK3uxoB00mAWgIR0CgBGZOzposdX2UKGgGR0BfPZUgjhUBaAdN6ANoCEdAoASBY9xIa3V9lChoBkdAcX+029+PR2gHTRcBaAhHQKAEsmMwUQF1fZQoaAZHQG+3z4DcM3JoB00EAWgIR0CgBRg+6iCbdX2UKGgGR0Bx0BBiTdLyaAdNLQFoCEdAoAVDcynDSHV9lChoBkdAcm6EC/47BGgHTQEBaAhHQKAFhIOH3111fZQoaAZHQHFkkrCm/FloB00UAWgIR0CgBdzho/RmdX2UKGgGR0BxB6lZX+2maAdNggFoCEdAoAXoGSpzcXV9lChoBkdAcxpjin5zo2gHS/JoCEdAoAa6SzPa+XV9lChoBkdAcmRwqAjIJmgHTQQBaAhHQKAHcQ+2Vml1fZQoaAZHQHCTLCJoCdVoB00YAWgIR0CgEfUNBnjAdX2UKGgGR0ByYQaJhvzfaAdNCgFoCEdAoBKHj81n/XV9lChoBkdAcKL4SYgJTmgHTRoBaAhHQKASoDPGACp1fZQoaAZHQHMdu1fE4vNoB000AWgIR0CgEr50KZ2IdX2UKGgGR0BwJRc+qzZ6aAdNTAJoCEdAoBLqTyJ9A3V9lChoBkdAcLjCEYfnwGgHTRsBaAhHQKATFSv1UVB1fZQoaAZHQG8MrxqfvndoB007AWgIR0CgEyH5i3G5dX2UKGgGR0BxS8nJDE3saAdNJQFoCEdAoBNmrp7kXHV9lChoBkdAcRl9lmOENGgHTRMBaAhHQKATtqHGjsV1fZQoaAZHQHBLxJZntfJoB00mAWgIR0CgE80KRdQgdX2UKGgGR0Bzblrk8zRAaAdNHwFoCEdAoBQbZxrBTHV9lChoBkdAcLZB5HEuQWgHTQ8BaAhHQKAUOLjxTbZ1fZQoaAZHQG6YUONHYpVoB00lAWgIR0CgFIjjin50dX2UKGgGR0ByodTMqz7eaAdNEQFoCEdAoBUGcawUxnV9lChoBkdAcpi/2TPjXGgHTSABaAhHQKAV4GdqcmV1fZQoaAZHQHMawM+eOGVoB00GAWgIR0CgFexM36yjdX2UKGgGR0ByX30UXYUWaAdNqAJoCEdAoBY+zMRpUXV9lChoBkdAcCDBWPtD2WgHTQIBaAhHQKAWdRhttQ91fZQoaAZHQHD11og3cYZoB00WAWgIR0CgFpARsdkrdX2UKGgGR0BxOt0gbIcSaAdNEQFoCEdAoBaQLux8lXV9lChoBkdAblVBzFMqSWgHTRoBaAhHQKAXPEBKcut1fZQoaAZHQHGo9IXj2jBoB00FAWgIR0CgF2EPMB6sdX2UKGgGR0BxsvKRuCPIaAdNXQFoCEdAoBeMMRYigXV9lChoBkdAcMqb5M10kmgHTU0BaAhHQKAXqHvc8DB1fZQoaAZHQHN1hAv+OwRoB01OAWgIR0CgF7VEuxr0dX2UKGgGR0ByOZirksBiaAdNJAFoCEdAoBe5w4sEq3V9lChoBkdAcEpeGO+7DmgHTScBaAhHQKAYIiM5wOx1fZQoaAZHQG2kyQ5myxBoB00RAWgIR0CgGEcxTKkmdX2UKGgGR0Bytqmce8wpaAdNVQFoCEdAoBjSxxDLKXV9lChoBkdAcOim78Nx2mgHTUEBaAhHQKAZeBMi8nN1fZQoaAZHQHESKZDzAetoB00aAWgIR0CgGcX668QJdX2UKGgGR0Bw/wxQBPsSaAdNJgFoCEdAoBn8xfv4NHV9lChoBkdAcrCp0fYBeWgHTS4BaAhHQKAacVpKzzF1fZQoaAZHQG+JHU2DQJJoB00kAWgIR0CgGqPiT+vRdX2UKGgGR0ByWFQvYe1baAdNOgFoCEdAoBrcw5/9YXV9lChoBkdAbjc/oq0+kmgHTTwBaAhHQKAbA8K5TZR1fZQoaAZHQG8N/GVAzHloB00OAWgIR0CgGyyhi9ZidX2UKGgGR0Bw9/1xsEaEaAdNKwFoCEdAoBt+m3vx6XV9lChoBkdAbePdN34bj2gHTQoBaAhHQKAbgJw84gl1fZQoaAZHQHGqarFOwgVoB00lAWgIR0CgG64vvjOtdX2UKGgGR0BvhbjLjghsaAdNIwFoCEdAoBvCEYfnwHV9lChoBkdAcFcLidat92gHS/9oCEdAoBvLOVxCIHV9lChoBkdAckH9DQZ4wGgHTQABaAhHQKAb7l5GBnV1fZQoaAZHQHJtrQPZqVRoB00oAWgIR0CgHPjOcDr7dX2UKGgGR0BxPtAiV0LdaAdNHgFoCEdAoB19lI3BHnV9lChoBkdAcT2zxPO6d2gHS/xoCEdAoB38DSw4bXV9lChoBkdAbAEb1h9b5mgHTSQBaAhHQKAfLtqpLmJ1fZQoaAZHQGzxW56MR6FoB00AAWgIR0CgHz2phnandX2UKGgGR0BxguSlnAZbaAdNJAFoCEdAoB9f/aQFLXV9lChoBkdAcLX7f51vEWgHTT0BaAhHQKAfZLPD50t1fZQoaAZHQHD7s0P6KtRoB00eAWgIR0CgH3GUGFBZdX2UKGgGR0BvlhwsGxD9aAdNDgFoCEdAoB+Blz2ex3V9lChoBkdAcyqm0E5hjWgHTQYBaAhHQKAfrGOMl1N1fZQoaAZHQHEF9EG7jDNoB00bAWgIR0CgH+QvQF9sdX2UKGgGR0Bw5NF1B+nZaAdNFgFoCEdAoB/yR8twrHV9lChoBkdAcXG7sv7FbWgHTRIBaAhHQKAgDxc3VCp1fZQoaAZHQHAo2/rSmZVoB02mAWgIR0CgID7gjyFxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be8664dac178a012aa575e98a1ce455fd91ee73cd2efee597c19b0d3ef1ecc1f
|
| 3 |
+
size 148124
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79338eaa4180>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79338eaa4220>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79338eaa42c0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79338eaa4360>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79338eaa4400>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79338eaa44a0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79338eaa4540>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79338eaa45e0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79338eaa4680>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79338eaa4720>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79338eaa47c0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79338eaa4860>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79338ea11c00>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1739028621354697763,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHZvVL4EYo0/XeDavhDfyL4spqy+zl/SvQAAAAAAAAAA+otpPorkpj+zZcw+vb72vkP3nz6HWYm9AAAAAAAAAAAAl2I9PCqEP5sa0zziWrC+OwOCPcfLTL0AAAAAAAAAADOGIT1+mcY9KgYWvmHdRL6itIK8/qVZPQAAAAAAAAAAzb+vvTsdQD/zRp08l469vo0Xi70m4im6AAAAAAAAAACNP0u+KAPvvL4jATmk7bQ3EuFRPvWNNLgAAIA/AACAPzOpsj27/Do/mGl3vfuej76OySo9G+dNvAAAAAAAAAAAAHHOPO1/bj5K7Wm+u/1tvlN36ryIWsO8AAAAAAAAAACaLbS9SAaLPwbZr70ebdS+dHjrvW1mbzwAAAAAAAAAAF0XjL4pI6I//qTCvk53yb5gZLm+gYu6vQAAAAAAAAAAM9+1O5Ynnj+66lo7HYDBvqXFZbxGXSW8AAAAAAAAAAAtqQ4+37o8P4j0TbvzibW+OwPDPBPu/70AAAAAAAAAAHMMwb2uBai6/aDrtjVD57EdETK6sVQGNgAAgD8AAAAAgLZdPlNEVD8zpk29HKi4vr8JyD1mrda8AAAAAAAAAAAgI0o+ZwI4P886JL4vaqi+h56NPQktkL0AAAAAAAAAALNLYb3YLLw90FQPPsXyh760F109H8W0vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHZOtr9ETiMAWyUS/mMAXSUR0Cf9jErGza9dX2UKGgGR0BwS/KxLTQWaAdNJgFoCEdAn/annZCfH3V9lChoBkdAcL4P07KaHGgHTR8BaAhHQJ/3N+nZTQ51fZQoaAZHQG/MrzwtrbhoB005AWgIR0Cf92ZVn27GdX2UKGgGR0BwT7sPatcOaAdNIwFoCEdAn/exTS9dvHV9lChoBkdAcTtg0TDfnGgHTZ8BaAhHQJ/4prYXfqJ1fZQoaAZHQGDdE0aZQYVoB03oA2gIR0Cf+S+z+m3wdX2UKGgGR0Bx0PqW1MM7aAdNFAFoCEdAn/ofIGQjlnV9lChoBkdAb8w8yvcJt2gHS/xoCEdAn/q1oxpL3HV9lChoBkdAbLQdz4k/r2gHTSEBaAhHQJ/7K3VkMCt1fZQoaAZHQHLZ6rJbMX9oB0v+aAhHQJ/7ZVPva111fZQoaAZHQHAMwGjbi6xoB00mAWgIR0Cf+43cYZVGdX2UKGgGR0BxMhYxL0z1aAdNOQFoCEdAn/yJ1FH8THV9lChoBkdAbWpNfw7T2GgHTRMBaAhHQJ/8rHPu5SZ1fZQoaAZHQG4NQpnYg7poB00kAWgIR0Cf/mrAxi5NdX2UKGgGR0By5ks+V1OkaAdNJAFoCEdAn/7Uk0JnhHV9lChoBkdAcmWAood+5WgHTSQBaAhHQJ//QAggX/J1fZQoaAZHQHABy0Sh8IBoB00NAWgIR0Cf/5fXwsoVdX2UKGgGR0Busv+qBEroaAdNJAFoCEdAn//GhAWznnV9lChoBkdAcXirVe8f3mgHTSMBaAhHQJ//6KWLP2R1fZQoaAZHQG9aJ2dNFjNoB00HAWgIR0CgACZ9E1EWdX2UKGgGR0Bx03Roh6jWaAdNCAFoCEdAoABiV6eGwnV9lChoBkdAcXG3+MqBmWgHS/poCEdAoACnPkaMrHV9lChoBkdAcMSIQvpQlGgHTQMBaAhHQKABCCTUy591fZQoaAZHQGznC+lCTlloB00VAWgIR0CgAX+UILPVdX2UKGgGR0BvchtHhCMQaAdNEwFoCEdAoAGU8/2TPnV9lChoBkdAbVrczqKP4mgHTR4BaAhHQKABzm0VrRB1fZQoaAZHQHMLcDSw4bVoB00OAWgIR0CgAx+MqBmPdX2UKGgGR0BxN8qH446waAdNDgFoCEdAoAOf0Eovz3V9lChoBkdAb5Y+dsi0OWgHTXABaAhHQKADyLjPv8Z1fZQoaAZHQHGIYHgP3BZoB00qAWgIR0CgA95DZ13ddX2UKGgGR0Bx/+2Xsw+MaAdNewFoCEdAoAQLUd7v5XV9lChoBkdAcXyNTtLL6mgHTR8BaAhHQKAENdrwe/51fZQoaAZHQHCNxMSK3uxoB00mAWgIR0CgBGZOzposdX2UKGgGR0BfPZUgjhUBaAdN6ANoCEdAoASBY9xIa3V9lChoBkdAcX+029+PR2gHTRcBaAhHQKAEsmMwUQF1fZQoaAZHQG+3z4DcM3JoB00EAWgIR0CgBRg+6iCbdX2UKGgGR0Bx0BBiTdLyaAdNLQFoCEdAoAVDcynDSHV9lChoBkdAcm6EC/47BGgHTQEBaAhHQKAFhIOH3111fZQoaAZHQHFkkrCm/FloB00UAWgIR0CgBdzho/RmdX2UKGgGR0BxB6lZX+2maAdNggFoCEdAoAXoGSpzcXV9lChoBkdAcxpjin5zo2gHS/JoCEdAoAa6SzPa+XV9lChoBkdAcmRwqAjIJmgHTQQBaAhHQKAHcQ+2Vml1fZQoaAZHQHCTLCJoCdVoB00YAWgIR0CgEfUNBnjAdX2UKGgGR0ByYQaJhvzfaAdNCgFoCEdAoBKHj81n/XV9lChoBkdAcKL4SYgJTmgHTRoBaAhHQKASoDPGACp1fZQoaAZHQHMdu1fE4vNoB000AWgIR0CgEr50KZ2IdX2UKGgGR0BwJRc+qzZ6aAdNTAJoCEdAoBLqTyJ9A3V9lChoBkdAcLjCEYfnwGgHTRsBaAhHQKATFSv1UVB1fZQoaAZHQG8MrxqfvndoB007AWgIR0CgEyH5i3G5dX2UKGgGR0BxS8nJDE3saAdNJQFoCEdAoBNmrp7kXHV9lChoBkdAcRl9lmOENGgHTRMBaAhHQKATtqHGjsV1fZQoaAZHQHBLxJZntfJoB00mAWgIR0CgE80KRdQgdX2UKGgGR0Bzblrk8zRAaAdNHwFoCEdAoBQbZxrBTHV9lChoBkdAcLZB5HEuQWgHTQ8BaAhHQKAUOLjxTbZ1fZQoaAZHQG6YUONHYpVoB00lAWgIR0CgFIjjin50dX2UKGgGR0ByodTMqz7eaAdNEQFoCEdAoBUGcawUxnV9lChoBkdAcpi/2TPjXGgHTSABaAhHQKAV4GdqcmV1fZQoaAZHQHMawM+eOGVoB00GAWgIR0CgFexM36yjdX2UKGgGR0ByX30UXYUWaAdNqAJoCEdAoBY+zMRpUXV9lChoBkdAcCDBWPtD2WgHTQIBaAhHQKAWdRhttQ91fZQoaAZHQHD11og3cYZoB00WAWgIR0CgFpARsdkrdX2UKGgGR0BxOt0gbIcSaAdNEQFoCEdAoBaQLux8lXV9lChoBkdAblVBzFMqSWgHTRoBaAhHQKAXPEBKcut1fZQoaAZHQHGo9IXj2jBoB00FAWgIR0CgF2EPMB6sdX2UKGgGR0BxsvKRuCPIaAdNXQFoCEdAoBeMMRYigXV9lChoBkdAcMqb5M10kmgHTU0BaAhHQKAXqHvc8DB1fZQoaAZHQHN1hAv+OwRoB01OAWgIR0CgF7VEuxr0dX2UKGgGR0ByOZirksBiaAdNJAFoCEdAoBe5w4sEq3V9lChoBkdAcEpeGO+7DmgHTScBaAhHQKAYIiM5wOx1fZQoaAZHQG2kyQ5myxBoB00RAWgIR0CgGEcxTKkmdX2UKGgGR0Bytqmce8wpaAdNVQFoCEdAoBjSxxDLKXV9lChoBkdAcOim78Nx2mgHTUEBaAhHQKAZeBMi8nN1fZQoaAZHQHESKZDzAetoB00aAWgIR0CgGcX668QJdX2UKGgGR0Bw/wxQBPsSaAdNJgFoCEdAoBn8xfv4NHV9lChoBkdAcrCp0fYBeWgHTS4BaAhHQKAacVpKzzF1fZQoaAZHQG+JHU2DQJJoB00kAWgIR0CgGqPiT+vRdX2UKGgGR0ByWFQvYe1baAdNOgFoCEdAoBrcw5/9YXV9lChoBkdAbjc/oq0+kmgHTTwBaAhHQKAbA8K5TZR1fZQoaAZHQG8N/GVAzHloB00OAWgIR0CgGyyhi9ZidX2UKGgGR0Bw9/1xsEaEaAdNKwFoCEdAoBt+m3vx6XV9lChoBkdAbePdN34bj2gHTQoBaAhHQKAbgJw84gl1fZQoaAZHQHGqarFOwgVoB00lAWgIR0CgG64vvjOtdX2UKGgGR0BvhbjLjghsaAdNIwFoCEdAoBvCEYfnwHV9lChoBkdAcFcLidat92gHS/9oCEdAoBvLOVxCIHV9lChoBkdAckH9DQZ4wGgHTQABaAhHQKAb7l5GBnV1fZQoaAZHQHJtrQPZqVRoB00oAWgIR0CgHPjOcDr7dX2UKGgGR0BxPtAiV0LdaAdNHgFoCEdAoB19lI3BHnV9lChoBkdAcT2zxPO6d2gHS/xoCEdAoB38DSw4bXV9lChoBkdAbAEb1h9b5mgHTSQBaAhHQKAfLtqpLmJ1fZQoaAZHQGzxW56MR6FoB00AAWgIR0CgHz2phnandX2UKGgGR0BxguSlnAZbaAdNJAFoCEdAoB9f/aQFLXV9lChoBkdAcLX7f51vEWgHTT0BaAhHQKAfZLPD50t1fZQoaAZHQHD7s0P6KtRoB00eAWgIR0CgH3GUGFBZdX2UKGgGR0BvlhwsGxD9aAdNDgFoCEdAoB+Blz2ex3V9lChoBkdAcyqm0E5hjWgHTQYBaAhHQKAfrGOMl1N1fZQoaAZHQHEF9EG7jDNoB00bAWgIR0CgH+QvQF9sdX2UKGgGR0Bw5NF1B+nZaAdNFgFoCEdAoB/yR8twrHV9lChoBkdAcXG7sv7FbWgHTRIBaAhHQKAgDxc3VCp1fZQoaAZHQHAo2/rSmZVoB02mAWgIR0CgID7gjyFxdWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 324,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7b472eac055e43f8cfb3253a3c9db3425e7b475502b9a047536ec8f98b64b68
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5ad562c364cee360a1337c3f6d7c6becc1defe93475b220cf89e30ee4e878ee
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
| 2 |
+
- Python: 3.11.11
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.5.1+cu124
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.26.4
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:823fb140b64590fe10e798f22d0b5ae8d170f104e12808e5ac70c89d50ab5a54
|
| 3 |
+
size 160213
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 255.9544661, "std_reward": 22.621945121750162, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-08T15:55:34.952631"}
|