|
from transformers import CamembertConfig |
|
|
|
|
|
class CLIPTextCamembertConfig(CamembertConfig): |
|
|
|
model_type = "clip_text_camembert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=25005, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
projection_dim=512, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=512, |
|
hidden_act="gelu", |
|
layer_norm_eps=1e-12, |
|
attention_dropout=0.1, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
type_vocab_size=1, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.type_vocab_size = type_vocab_size |
|
self.auto_map = { |
|
"AutoConfig": "configuration_clip_camembert.CLIPTextCamembertConfig", |
|
"AutoModel": "modeling_clip_camembert.CLIPTextCamembertModelWithProjection", |
|
} |
|
|