ireneisdoomed commited on
Commit
6a3a2c7
1 Parent(s): 14b7e9e

chore: update model

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +169 -0
  3. classifier.skops +3 -0
  4. config.json +155 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ classifier.skops filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: skops
8
+ model_file: classifier.skops
9
+ widget:
10
+ - structuredData:
11
+ distanceTssMean:
12
+ - 0.005956897512078285
13
+ - 0.0535997599363327
14
+ - 0.0007216916419565678
15
+ distanceTssMinimum:
16
+ - 0.00023104190768208355
17
+ - 0.008684908039867878
18
+ - 0.0
19
+ eqtlColocClppMaximum:
20
+ - 0.0
21
+ - 0.0
22
+ - 2.9394341254374012e-05
23
+ eqtlColocClppMaximumNeighborhood:
24
+ - -1.0844675302505493
25
+ - 0.0
26
+ - -2.4551262855529785
27
+ eqtlColocLlrMaximum:
28
+ - 0.0
29
+ - 0.0
30
+ - -5.864833831787109
31
+ eqtlColocLlrMaximumNeighborhood:
32
+ - 0.6375470161437988
33
+ - 0.0
34
+ - -0.6227747797966003
35
+ pqtlColocClppMaximum:
36
+ - 0.0
37
+ - 0.0
38
+ - 0.0
39
+ pqtlColocClppMaximumNeighborhood:
40
+ - 0.0
41
+ - 0.0
42
+ - 0.0
43
+ pqtlColocLlrMaximum:
44
+ - 0.0
45
+ - 0.0
46
+ - 0.0
47
+ pqtlColocLlrMaximumNeighborhood:
48
+ - 0.0
49
+ - 0.0
50
+ - 0.0
51
+ sqtlColocClppMaximum:
52
+ - 0.0
53
+ - 0.0
54
+ - 0.0
55
+ sqtlColocClppMaximumNeighborhood:
56
+ - -1.75723135471344
57
+ - 0.0
58
+ - -3.7946090698242188
59
+ sqtlColocLlrMaximum:
60
+ - 0.0
61
+ - 0.0
62
+ - 0.0
63
+ sqtlColocLlrMaximumNeighborhood:
64
+ - 0.5101715922355652
65
+ - 0.0
66
+ - 0.5695658922195435
67
+ studyLocusId:
68
+ - -3543201973216145411
69
+ - -4859077617144690060
70
+ - -870008257560905822
71
+ tuqtlColocClppMaximum:
72
+ - 0.014770692214369774
73
+ - 0.0
74
+ - 0.0
75
+ tuqtlColocClppMaximumNeighborhood:
76
+ - -2.5447564125061035
77
+ - 0.0
78
+ - -2.497274160385132
79
+ tuqtlColocLlrMaximum:
80
+ - 2.057318925857544
81
+ - 0.0
82
+ - 0.0
83
+ tuqtlColocLlrMaximumNeighborhood:
84
+ - 0.35586467385292053
85
+ - 0.0
86
+ - -0.7435243129730225
87
+ vepMaximum:
88
+ - 0.003306703409180045
89
+ - 0.0
90
+ - 5.660330498358235e-05
91
+ vepMaximumNeighborhood:
92
+ - 0.005385574419051409
93
+ - 0.0
94
+ - 0.026831166818737984
95
+ vepMean:
96
+ - 0.001106836018152535
97
+ - 0.0
98
+ - 1.4581254617951345e-05
99
+ vepMeanNeighborhood:
100
+ - 0.0007926996913738549
101
+ - 0.0
102
+ - 0.00018241332145407796
103
+ ---
104
+
105
+ # Model description
106
+
107
+ The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
108
+
109
+ - Distance: (from credible set variants to gene)
110
+ - Molecular QTL Colocalization
111
+ - Chromatin Interaction: (e.g., promoter-capture Hi-C)
112
+ - Variant Pathogenicity: (from VEP)
113
+
114
+ More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
115
+
116
+
117
+ ## Intended uses & limitations
118
+
119
+ [More Information Needed]
120
+
121
+ ## Training Procedure
122
+
123
+ Gradient Boosting Classifier
124
+
125
+ ### Hyperparameters
126
+
127
+ <details>
128
+ <summary> Click to expand </summary>
129
+
130
+ | Hyperparameter | Value |
131
+ |--------------------------|--------------|
132
+ | ccp_alpha | 0.0 |
133
+ | criterion | friedman_mse |
134
+ | init | |
135
+ | learning_rate | 0.1 |
136
+ | loss | log_loss |
137
+ | max_depth | 5 |
138
+ | max_features | |
139
+ | max_leaf_nodes | |
140
+ | min_impurity_decrease | 0.0 |
141
+ | min_samples_leaf | 1 |
142
+ | min_samples_split | 2 |
143
+ | min_weight_fraction_leaf | 0.0 |
144
+ | n_estimators | 100 |
145
+ | n_iter_no_change | |
146
+ | random_state | 42 |
147
+ | subsample | 1.0 |
148
+ | tol | 0.0001 |
149
+ | validation_fraction | 0.1 |
150
+ | verbose | 0 |
151
+ | warm_start | False |
152
+
153
+ </details>
154
+
155
+ # How to Get Started with the Model
156
+
157
+ To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
158
+ The model can then be used to make predictions using the `predict` method.
159
+
160
+ More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
161
+
162
+
163
+ # Citation
164
+
165
+ https://doi.org/10.1038/s41588-021-00945-5
166
+
167
+ # License
168
+
169
+ MIT
classifier.skops ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c0e4873766e715b02829f90a8dc183b7f96b9095446616e559bbe8fda2339b
3
+ size 2809073
config.json ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "studyLocusId",
5
+ "distanceTssMean",
6
+ "distanceTssMinimum",
7
+ "vepMaximumNeighborhood",
8
+ "vepMaximum",
9
+ "vepMeanNeighborhood",
10
+ "vepMean",
11
+ "eqtlColocClppMaximum",
12
+ "eqtlColocClppMaximumNeighborhood",
13
+ "pqtlColocClppMaximum",
14
+ "pqtlColocClppMaximumNeighborhood",
15
+ "sqtlColocClppMaximum",
16
+ "sqtlColocClppMaximumNeighborhood",
17
+ "tuqtlColocClppMaximum",
18
+ "tuqtlColocClppMaximumNeighborhood",
19
+ "eqtlColocLlrMaximum",
20
+ "eqtlColocLlrMaximumNeighborhood",
21
+ "pqtlColocLlrMaximum",
22
+ "pqtlColocLlrMaximumNeighborhood",
23
+ "sqtlColocLlrMaximum",
24
+ "sqtlColocLlrMaximumNeighborhood",
25
+ "tuqtlColocLlrMaximum",
26
+ "tuqtlColocLlrMaximumNeighborhood"
27
+ ],
28
+ "environment": [
29
+ "scikit-learn=1.5.1"
30
+ ],
31
+ "example_input": {
32
+ "distanceTssMean": [
33
+ 0.005956897512078285,
34
+ 0.0535997599363327,
35
+ 0.0007216916419565678
36
+ ],
37
+ "distanceTssMinimum": [
38
+ 0.00023104190768208355,
39
+ 0.008684908039867878,
40
+ 0.0
41
+ ],
42
+ "eqtlColocClppMaximum": [
43
+ 0.0,
44
+ 0.0,
45
+ 2.9394341254374012e-05
46
+ ],
47
+ "eqtlColocClppMaximumNeighborhood": [
48
+ -1.0844675302505493,
49
+ 0.0,
50
+ -2.4551262855529785
51
+ ],
52
+ "eqtlColocLlrMaximum": [
53
+ 0.0,
54
+ 0.0,
55
+ -5.864833831787109
56
+ ],
57
+ "eqtlColocLlrMaximumNeighborhood": [
58
+ 0.6375470161437988,
59
+ 0.0,
60
+ -0.6227747797966003
61
+ ],
62
+ "pqtlColocClppMaximum": [
63
+ 0.0,
64
+ 0.0,
65
+ 0.0
66
+ ],
67
+ "pqtlColocClppMaximumNeighborhood": [
68
+ 0.0,
69
+ 0.0,
70
+ 0.0
71
+ ],
72
+ "pqtlColocLlrMaximum": [
73
+ 0.0,
74
+ 0.0,
75
+ 0.0
76
+ ],
77
+ "pqtlColocLlrMaximumNeighborhood": [
78
+ 0.0,
79
+ 0.0,
80
+ 0.0
81
+ ],
82
+ "sqtlColocClppMaximum": [
83
+ 0.0,
84
+ 0.0,
85
+ 0.0
86
+ ],
87
+ "sqtlColocClppMaximumNeighborhood": [
88
+ -1.75723135471344,
89
+ 0.0,
90
+ -3.7946090698242188
91
+ ],
92
+ "sqtlColocLlrMaximum": [
93
+ 0.0,
94
+ 0.0,
95
+ 0.0
96
+ ],
97
+ "sqtlColocLlrMaximumNeighborhood": [
98
+ 0.5101715922355652,
99
+ 0.0,
100
+ 0.5695658922195435
101
+ ],
102
+ "studyLocusId": [
103
+ -3543201973216145411,
104
+ -4859077617144690060,
105
+ -870008257560905822
106
+ ],
107
+ "tuqtlColocClppMaximum": [
108
+ 0.014770692214369774,
109
+ 0.0,
110
+ 0.0
111
+ ],
112
+ "tuqtlColocClppMaximumNeighborhood": [
113
+ -2.5447564125061035,
114
+ 0.0,
115
+ -2.497274160385132
116
+ ],
117
+ "tuqtlColocLlrMaximum": [
118
+ 2.057318925857544,
119
+ 0.0,
120
+ 0.0
121
+ ],
122
+ "tuqtlColocLlrMaximumNeighborhood": [
123
+ 0.35586467385292053,
124
+ 0.0,
125
+ -0.7435243129730225
126
+ ],
127
+ "vepMaximum": [
128
+ 0.003306703409180045,
129
+ 0.0,
130
+ 5.660330498358235e-05
131
+ ],
132
+ "vepMaximumNeighborhood": [
133
+ 0.005385574419051409,
134
+ 0.0,
135
+ 0.026831166818737984
136
+ ],
137
+ "vepMean": [
138
+ 0.001106836018152535,
139
+ 0.0,
140
+ 1.4581254617951345e-05
141
+ ],
142
+ "vepMeanNeighborhood": [
143
+ 0.0007926996913738549,
144
+ 0.0,
145
+ 0.00018241332145407796
146
+ ]
147
+ },
148
+ "model": {
149
+ "file": "classifier.skops"
150
+ },
151
+ "model_format": "skops",
152
+ "task": "tabular-classification",
153
+ "use_intelex": false
154
+ }
155
+ }