ireneisdoomed
commited on
Commit
•
6a3a2c7
1
Parent(s):
14b7e9e
chore: update model
Browse files- .gitattributes +1 -0
- README.md +169 -0
- classifier.skops +3 -0
- config.json +155 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
classifier.skops filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: skops
|
8 |
+
model_file: classifier.skops
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
distanceTssMean:
|
12 |
+
- 0.005956897512078285
|
13 |
+
- 0.0535997599363327
|
14 |
+
- 0.0007216916419565678
|
15 |
+
distanceTssMinimum:
|
16 |
+
- 0.00023104190768208355
|
17 |
+
- 0.008684908039867878
|
18 |
+
- 0.0
|
19 |
+
eqtlColocClppMaximum:
|
20 |
+
- 0.0
|
21 |
+
- 0.0
|
22 |
+
- 2.9394341254374012e-05
|
23 |
+
eqtlColocClppMaximumNeighborhood:
|
24 |
+
- -1.0844675302505493
|
25 |
+
- 0.0
|
26 |
+
- -2.4551262855529785
|
27 |
+
eqtlColocLlrMaximum:
|
28 |
+
- 0.0
|
29 |
+
- 0.0
|
30 |
+
- -5.864833831787109
|
31 |
+
eqtlColocLlrMaximumNeighborhood:
|
32 |
+
- 0.6375470161437988
|
33 |
+
- 0.0
|
34 |
+
- -0.6227747797966003
|
35 |
+
pqtlColocClppMaximum:
|
36 |
+
- 0.0
|
37 |
+
- 0.0
|
38 |
+
- 0.0
|
39 |
+
pqtlColocClppMaximumNeighborhood:
|
40 |
+
- 0.0
|
41 |
+
- 0.0
|
42 |
+
- 0.0
|
43 |
+
pqtlColocLlrMaximum:
|
44 |
+
- 0.0
|
45 |
+
- 0.0
|
46 |
+
- 0.0
|
47 |
+
pqtlColocLlrMaximumNeighborhood:
|
48 |
+
- 0.0
|
49 |
+
- 0.0
|
50 |
+
- 0.0
|
51 |
+
sqtlColocClppMaximum:
|
52 |
+
- 0.0
|
53 |
+
- 0.0
|
54 |
+
- 0.0
|
55 |
+
sqtlColocClppMaximumNeighborhood:
|
56 |
+
- -1.75723135471344
|
57 |
+
- 0.0
|
58 |
+
- -3.7946090698242188
|
59 |
+
sqtlColocLlrMaximum:
|
60 |
+
- 0.0
|
61 |
+
- 0.0
|
62 |
+
- 0.0
|
63 |
+
sqtlColocLlrMaximumNeighborhood:
|
64 |
+
- 0.5101715922355652
|
65 |
+
- 0.0
|
66 |
+
- 0.5695658922195435
|
67 |
+
studyLocusId:
|
68 |
+
- -3543201973216145411
|
69 |
+
- -4859077617144690060
|
70 |
+
- -870008257560905822
|
71 |
+
tuqtlColocClppMaximum:
|
72 |
+
- 0.014770692214369774
|
73 |
+
- 0.0
|
74 |
+
- 0.0
|
75 |
+
tuqtlColocClppMaximumNeighborhood:
|
76 |
+
- -2.5447564125061035
|
77 |
+
- 0.0
|
78 |
+
- -2.497274160385132
|
79 |
+
tuqtlColocLlrMaximum:
|
80 |
+
- 2.057318925857544
|
81 |
+
- 0.0
|
82 |
+
- 0.0
|
83 |
+
tuqtlColocLlrMaximumNeighborhood:
|
84 |
+
- 0.35586467385292053
|
85 |
+
- 0.0
|
86 |
+
- -0.7435243129730225
|
87 |
+
vepMaximum:
|
88 |
+
- 0.003306703409180045
|
89 |
+
- 0.0
|
90 |
+
- 5.660330498358235e-05
|
91 |
+
vepMaximumNeighborhood:
|
92 |
+
- 0.005385574419051409
|
93 |
+
- 0.0
|
94 |
+
- 0.026831166818737984
|
95 |
+
vepMean:
|
96 |
+
- 0.001106836018152535
|
97 |
+
- 0.0
|
98 |
+
- 1.4581254617951345e-05
|
99 |
+
vepMeanNeighborhood:
|
100 |
+
- 0.0007926996913738549
|
101 |
+
- 0.0
|
102 |
+
- 0.00018241332145407796
|
103 |
+
---
|
104 |
+
|
105 |
+
# Model description
|
106 |
+
|
107 |
+
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
108 |
+
|
109 |
+
- Distance: (from credible set variants to gene)
|
110 |
+
- Molecular QTL Colocalization
|
111 |
+
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
|
112 |
+
- Variant Pathogenicity: (from VEP)
|
113 |
+
|
114 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
|
115 |
+
|
116 |
+
|
117 |
+
## Intended uses & limitations
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
## Training Procedure
|
122 |
+
|
123 |
+
Gradient Boosting Classifier
|
124 |
+
|
125 |
+
### Hyperparameters
|
126 |
+
|
127 |
+
<details>
|
128 |
+
<summary> Click to expand </summary>
|
129 |
+
|
130 |
+
| Hyperparameter | Value |
|
131 |
+
|--------------------------|--------------|
|
132 |
+
| ccp_alpha | 0.0 |
|
133 |
+
| criterion | friedman_mse |
|
134 |
+
| init | |
|
135 |
+
| learning_rate | 0.1 |
|
136 |
+
| loss | log_loss |
|
137 |
+
| max_depth | 5 |
|
138 |
+
| max_features | |
|
139 |
+
| max_leaf_nodes | |
|
140 |
+
| min_impurity_decrease | 0.0 |
|
141 |
+
| min_samples_leaf | 1 |
|
142 |
+
| min_samples_split | 2 |
|
143 |
+
| min_weight_fraction_leaf | 0.0 |
|
144 |
+
| n_estimators | 100 |
|
145 |
+
| n_iter_no_change | |
|
146 |
+
| random_state | 42 |
|
147 |
+
| subsample | 1.0 |
|
148 |
+
| tol | 0.0001 |
|
149 |
+
| validation_fraction | 0.1 |
|
150 |
+
| verbose | 0 |
|
151 |
+
| warm_start | False |
|
152 |
+
|
153 |
+
</details>
|
154 |
+
|
155 |
+
# How to Get Started with the Model
|
156 |
+
|
157 |
+
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
158 |
+
The model can then be used to make predictions using the `predict` method.
|
159 |
+
|
160 |
+
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
|
161 |
+
|
162 |
+
|
163 |
+
# Citation
|
164 |
+
|
165 |
+
https://doi.org/10.1038/s41588-021-00945-5
|
166 |
+
|
167 |
+
# License
|
168 |
+
|
169 |
+
MIT
|
classifier.skops
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c0e4873766e715b02829f90a8dc183b7f96b9095446616e559bbe8fda2339b
|
3 |
+
size 2809073
|
config.json
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"studyLocusId",
|
5 |
+
"distanceTssMean",
|
6 |
+
"distanceTssMinimum",
|
7 |
+
"vepMaximumNeighborhood",
|
8 |
+
"vepMaximum",
|
9 |
+
"vepMeanNeighborhood",
|
10 |
+
"vepMean",
|
11 |
+
"eqtlColocClppMaximum",
|
12 |
+
"eqtlColocClppMaximumNeighborhood",
|
13 |
+
"pqtlColocClppMaximum",
|
14 |
+
"pqtlColocClppMaximumNeighborhood",
|
15 |
+
"sqtlColocClppMaximum",
|
16 |
+
"sqtlColocClppMaximumNeighborhood",
|
17 |
+
"tuqtlColocClppMaximum",
|
18 |
+
"tuqtlColocClppMaximumNeighborhood",
|
19 |
+
"eqtlColocLlrMaximum",
|
20 |
+
"eqtlColocLlrMaximumNeighborhood",
|
21 |
+
"pqtlColocLlrMaximum",
|
22 |
+
"pqtlColocLlrMaximumNeighborhood",
|
23 |
+
"sqtlColocLlrMaximum",
|
24 |
+
"sqtlColocLlrMaximumNeighborhood",
|
25 |
+
"tuqtlColocLlrMaximum",
|
26 |
+
"tuqtlColocLlrMaximumNeighborhood"
|
27 |
+
],
|
28 |
+
"environment": [
|
29 |
+
"scikit-learn=1.5.1"
|
30 |
+
],
|
31 |
+
"example_input": {
|
32 |
+
"distanceTssMean": [
|
33 |
+
0.005956897512078285,
|
34 |
+
0.0535997599363327,
|
35 |
+
0.0007216916419565678
|
36 |
+
],
|
37 |
+
"distanceTssMinimum": [
|
38 |
+
0.00023104190768208355,
|
39 |
+
0.008684908039867878,
|
40 |
+
0.0
|
41 |
+
],
|
42 |
+
"eqtlColocClppMaximum": [
|
43 |
+
0.0,
|
44 |
+
0.0,
|
45 |
+
2.9394341254374012e-05
|
46 |
+
],
|
47 |
+
"eqtlColocClppMaximumNeighborhood": [
|
48 |
+
-1.0844675302505493,
|
49 |
+
0.0,
|
50 |
+
-2.4551262855529785
|
51 |
+
],
|
52 |
+
"eqtlColocLlrMaximum": [
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
-5.864833831787109
|
56 |
+
],
|
57 |
+
"eqtlColocLlrMaximumNeighborhood": [
|
58 |
+
0.6375470161437988,
|
59 |
+
0.0,
|
60 |
+
-0.6227747797966003
|
61 |
+
],
|
62 |
+
"pqtlColocClppMaximum": [
|
63 |
+
0.0,
|
64 |
+
0.0,
|
65 |
+
0.0
|
66 |
+
],
|
67 |
+
"pqtlColocClppMaximumNeighborhood": [
|
68 |
+
0.0,
|
69 |
+
0.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
"pqtlColocLlrMaximum": [
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0
|
76 |
+
],
|
77 |
+
"pqtlColocLlrMaximumNeighborhood": [
|
78 |
+
0.0,
|
79 |
+
0.0,
|
80 |
+
0.0
|
81 |
+
],
|
82 |
+
"sqtlColocClppMaximum": [
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.0
|
86 |
+
],
|
87 |
+
"sqtlColocClppMaximumNeighborhood": [
|
88 |
+
-1.75723135471344,
|
89 |
+
0.0,
|
90 |
+
-3.7946090698242188
|
91 |
+
],
|
92 |
+
"sqtlColocLlrMaximum": [
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0
|
96 |
+
],
|
97 |
+
"sqtlColocLlrMaximumNeighborhood": [
|
98 |
+
0.5101715922355652,
|
99 |
+
0.0,
|
100 |
+
0.5695658922195435
|
101 |
+
],
|
102 |
+
"studyLocusId": [
|
103 |
+
-3543201973216145411,
|
104 |
+
-4859077617144690060,
|
105 |
+
-870008257560905822
|
106 |
+
],
|
107 |
+
"tuqtlColocClppMaximum": [
|
108 |
+
0.014770692214369774,
|
109 |
+
0.0,
|
110 |
+
0.0
|
111 |
+
],
|
112 |
+
"tuqtlColocClppMaximumNeighborhood": [
|
113 |
+
-2.5447564125061035,
|
114 |
+
0.0,
|
115 |
+
-2.497274160385132
|
116 |
+
],
|
117 |
+
"tuqtlColocLlrMaximum": [
|
118 |
+
2.057318925857544,
|
119 |
+
0.0,
|
120 |
+
0.0
|
121 |
+
],
|
122 |
+
"tuqtlColocLlrMaximumNeighborhood": [
|
123 |
+
0.35586467385292053,
|
124 |
+
0.0,
|
125 |
+
-0.7435243129730225
|
126 |
+
],
|
127 |
+
"vepMaximum": [
|
128 |
+
0.003306703409180045,
|
129 |
+
0.0,
|
130 |
+
5.660330498358235e-05
|
131 |
+
],
|
132 |
+
"vepMaximumNeighborhood": [
|
133 |
+
0.005385574419051409,
|
134 |
+
0.0,
|
135 |
+
0.026831166818737984
|
136 |
+
],
|
137 |
+
"vepMean": [
|
138 |
+
0.001106836018152535,
|
139 |
+
0.0,
|
140 |
+
1.4581254617951345e-05
|
141 |
+
],
|
142 |
+
"vepMeanNeighborhood": [
|
143 |
+
0.0007926996913738549,
|
144 |
+
0.0,
|
145 |
+
0.00018241332145407796
|
146 |
+
]
|
147 |
+
},
|
148 |
+
"model": {
|
149 |
+
"file": "classifier.skops"
|
150 |
+
},
|
151 |
+
"model_format": "skops",
|
152 |
+
"task": "tabular-classification",
|
153 |
+
"use_intelex": false
|
154 |
+
}
|
155 |
+
}
|