TenzinGayche
commited on
Commit
•
1b84f28
1
Parent(s):
0cba583
Upload handle.py
Browse files
handle.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import pyewts
|
6 |
+
import noisereduce as nr
|
7 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
8 |
+
from num2tib.core import convert
|
9 |
+
from num2tib.core import convert2text
|
10 |
+
import re
|
11 |
+
converter = pyewts.pyewts()
|
12 |
+
def replace_numbers_with_convert(sentence, wylie=True):
|
13 |
+
pattern = r'\d+(\.\d+)?'
|
14 |
+
def replace(match):
|
15 |
+
return convert(match.group(), wylie)
|
16 |
+
result = re.sub(pattern, replace, sentence)
|
17 |
+
|
18 |
+
return result
|
19 |
+
|
20 |
+
def cleanup_text(inputs):
|
21 |
+
for src, dst in replacements:
|
22 |
+
inputs = inputs.replace(src, dst)
|
23 |
+
return inputs
|
24 |
+
|
25 |
+
speaker_embeddings = {
|
26 |
+
"Lhasa(female)": "female_2.npy",
|
27 |
+
|
28 |
+
}
|
29 |
+
|
30 |
+
replacements = [
|
31 |
+
('_', '_'),
|
32 |
+
('*', 'v'),
|
33 |
+
('`', ';'),
|
34 |
+
('~', ','),
|
35 |
+
('+', ','),
|
36 |
+
('\\', ';'),
|
37 |
+
('|', ';'),
|
38 |
+
('╚',''),
|
39 |
+
('╗','')
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
class EndpointHandler():
|
47 |
+
def __init__(self, path=""):
|
48 |
+
# load the model
|
49 |
+
self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
|
50 |
+
self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
|
51 |
+
self.model.to('cuda')
|
52 |
+
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
53 |
+
|
54 |
+
|
55 |
+
def __call__(self, data: Dict[str]) -> Dict[str, str]:
|
56 |
+
"""
|
57 |
+
Args:
|
58 |
+
data (:obj:):
|
59 |
+
includes the deserialized audio file as bytes
|
60 |
+
Return:
|
61 |
+
A :obj:`dict`:. base64 encoded image
|
62 |
+
"""
|
63 |
+
# process input
|
64 |
+
|
65 |
+
if len(text.strip()) == 0:
|
66 |
+
return (16000, np.zeros(0).astype(np.int16))
|
67 |
+
text = converter.toWylie(text)
|
68 |
+
text=cleanup_text(text)
|
69 |
+
text=replace_numbers_with_convert(text)
|
70 |
+
inputs = self.processor(text=text, return_tensors="pt")
|
71 |
+
# limit input length
|
72 |
+
input_ids = inputs["input_ids"]
|
73 |
+
input_ids = input_ids[..., :self.model.config.max_text_positions]
|
74 |
+
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
|
75 |
+
speaker_embedding = torch.tensor(speaker_embedding)
|
76 |
+
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
|
77 |
+
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
|
78 |
+
return (16000, speech)
|