Yuantao Feng commited on
Commit
9d96bb5
·
1 Parent(s): 00c0329

Add SFace for face recognition (#3)

Browse files

* SFace and demo impl

* benchmark support and results for SFace

README.md CHANGED
@@ -17,7 +17,7 @@ Hardware Setup:
17
 
18
  ***Important Notes***:
19
  - The time data that shown on the following tables presents the time elapsed from preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results.
20
- - The time data that shown on the following tables is averaged from a 100-time run.
21
  - View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
22
 
23
  <!--
@@ -29,9 +29,10 @@ Hardware Setup:
29
  -->
30
  | Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) |
31
  |-------|------------|-----------------|--------------|
32
- | [YuNet](./models/face_detection_yunet) | 160x120 | 2.17 | 8.87 |
33
- | [DB](./models/text_detection_db) | 640x480 | 148.65 | 2759.88 |
34
- | [CRNN](./models/text_recognition_crnn) | 100x32 | 23.23 | 235.87 |
 
35
 
36
 
37
  ## License
 
17
 
18
  ***Important Notes***:
19
  - The time data that shown on the following tables presents the time elapsed from preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results.
20
+ - The time data that shown on the following tables is the median of benchmark runs.
21
  - View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
22
 
23
  <!--
 
29
  -->
30
  | Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) |
31
  |-------|------------|-----------------|--------------|
32
+ | [YuNet](./models/face_detection_yunet) | 160x120 | 2.35 | 8.72 |
33
+ | [DB](./models/text_detection_db) | 640x480 | 137.38 | 2780.78 |
34
+ | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
+ | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
36
 
37
 
38
  ## License
benchmark/benchmark.py CHANGED
@@ -78,7 +78,7 @@ class Data:
78
  def _load_label(self):
79
  labels = dict.fromkeys(self._files, None)
80
  for filename in self._files:
81
- labels[filename] = np.loadtxt(os.path.join(self._path, '{}.txt'.format(filename[:-4])))
82
  return labels
83
 
84
  def __getitem__(self, idx):
 
78
  def _load_label(self):
79
  labels = dict.fromkeys(self._files, None)
80
  for filename in self._files:
81
+ labels[filename] = np.loadtxt(os.path.join(self._path, '{}.txt'.format(filename[:-4])), ndmin=2)
82
  return labels
83
 
84
  def __getitem__(self, idx):
benchmark/config/face_detection_yunet.yaml CHANGED
@@ -1,7 +1,7 @@
1
  Benchmark:
2
  name: "Face Detection Benchmark"
3
  data:
4
- path: "benchmark/data/face"
5
  files: ["group.jpg", "concerts.jpg", "dance.jpg"]
6
  metric:
7
  sizes: # [[w1, h1], ...], Omit to run at original scale
 
1
  Benchmark:
2
  name: "Face Detection Benchmark"
3
  data:
4
+ path: "benchmark/data/face/detection"
5
  files: ["group.jpg", "concerts.jpg", "dance.jpg"]
6
  metric:
7
  sizes: # [[w1, h1], ...], Omit to run at original scale
benchmark/config/face_recognition_sface.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Benchmark:
2
+ name: "Face Recognition Benchmark"
3
+ data:
4
+ path: "benchmark/data/face/recognition"
5
+ files: ["Aaron_Tippin_0001.jpg", "Alvaro_Uribe_0028.jpg", "Alvaro_Uribe_0029.jpg", "Jose_Luis_Rodriguez_Zapatero_0001.jpg"]
6
+ useLabel: True
7
+ metric: # 'sizes' is omitted since this model requires input of fixed size
8
+ warmup: 3
9
+ repeat: 10
10
+ batchSize: 1
11
+ reduction: 'median'
12
+ backend: "default"
13
+ target: "cpu"
14
+
15
+ Model:
16
+ name: "SFace"
17
+ modelPath: "models/face_recognition_sface/face_recognition_sface.onnx"
models/__init__.py CHANGED
@@ -1,6 +1,7 @@
1
  from .face_detection_yunet.yunet import YuNet
2
  from .text_detection_db.db import DB
3
  from .text_recognition_crnn.crnn import CRNN
 
4
 
5
  class Registery:
6
  def __init__(self, name):
@@ -16,4 +17,5 @@ class Registery:
16
  MODELS = Registery('Models')
17
  MODELS.register(YuNet)
18
  MODELS.register(DB)
19
- MODELS.register(CRNN)
 
 
1
  from .face_detection_yunet.yunet import YuNet
2
  from .text_detection_db.db import DB
3
  from .text_recognition_crnn.crnn import CRNN
4
+ from .face_recognition_sface.sface import SFace
5
 
6
  class Registery:
7
  def __init__(self, name):
 
17
  MODELS = Registery('Models')
18
  MODELS.register(YuNet)
19
  MODELS.register(DB)
20
+ MODELS.register(CRNN)
21
+ MODELS.register(SFace)
models/face_detection_yunet/demo.py CHANGED
@@ -77,8 +77,8 @@ if __name__ == '__main__':
77
  # Print results
78
  print('{} faces detected.'.format(results.shape[0]))
79
  for idx, det in enumerate(results):
80
- print('{}: [{:.0f}, {:.0f}] [{:.0f}, {:.0f}], {:.2f}'.format(
81
- idx, det[0], det[1], det[2], det[3], det[-1])
82
  )
83
 
84
  # Draw results on the input image
 
77
  # Print results
78
  print('{} faces detected.'.format(results.shape[0]))
79
  for idx, det in enumerate(results):
80
+ print('{}: {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}'.format(
81
+ idx, *det[:-1])
82
  )
83
 
84
  # Draw results on the input image
models/face_recognition_sface/LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
models/face_recognition_sface/README.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SFace
2
+
3
+ SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition
4
+
5
+ SFace is contributed by [Yaoyao Zhong](https://github.com/zhongyy/SFace). [face_recognition_sface.onnx](./face_recognition_sface.onnx) is converted from the model from https://github.com/zhongyy/SFace thanks to [Chengrui Wang](https://github.com/crywang).
6
+
7
+ Note:
8
+ - There is [a PR for OpenCV adding this model](https://github.com/opencv/opencv/pull/20422) to work with OpenCV DNN in C++ implementation.
9
+ - Support 5-landmark warp for now.
10
+ - `demo.py` requires [../face_detection_yunet](../face_detection_yunet) to run.
11
+
12
+ ## Demo
13
+
14
+ Run the following command to try the demo:
15
+ ```shell
16
+ # recognize on images
17
+ python demo.py --input1 /path/to/image1 --input2 /path/to/image2
18
+ ```
19
+
20
+ ## License
21
+
22
+ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
23
+
24
+ ## Reference
25
+
26
+ - https://ieeexplore.ieee.org/document/9318547
27
+ - https://github.com/zhongyy/SFace
models/face_recognition_sface/demo.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+ import sys
8
+ import argparse
9
+
10
+ import numpy as np
11
+ import cv2 as cv
12
+
13
+ from sface import SFace
14
+
15
+ sys.path.append('../face_detection_yunet')
16
+ from yunet import YuNet
17
+
18
+ def str2bool(v):
19
+ if v.lower() in ['on', 'yes', 'true', 'y', 't']:
20
+ return True
21
+ elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
22
+ return False
23
+ else:
24
+ raise NotImplementedError
25
+
26
+ parser = argparse.ArgumentParser(
27
+ description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
28
+ parser.add_argument('--input1', '-i1', type=str, help='Path to the input image 1.')
29
+ parser.add_argument('--input2', '-i2', type=str, help='Path to the input image 2.')
30
+ parser.add_argument('--model', '-m', type=str, default='face_recognition_sface.onnx', help='Path to the model.')
31
+ parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, help='Distance type. \'0\': cosine, \'1\': norm_l1.')
32
+ parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
33
+ parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
34
+ args = parser.parse_args()
35
+
36
+ if __name__ == '__main__':
37
+ # Instantiate SFace for face recognition
38
+ recognizer = SFace(modelPath=args.model)
39
+ # Instantiate YuNet for face detection
40
+ detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet.onnx',
41
+ inputSize=[320, 320],
42
+ confThreshold=0.9,
43
+ nmsThreshold=0.3,
44
+ topK=5000,
45
+ keepTopK=750)
46
+
47
+ img1 = cv.imread(args.input1)
48
+ img2 = cv.imread(args.input2)
49
+
50
+ # Detect faces
51
+ detector.setInputSize([img1.shape[1], img1.shape[0]])
52
+ face1 = detector.infer(img1)
53
+ assert face1.shape[0] > 0, 'Cannot find a face in {}'.format(args.input1)
54
+ detector.setInputSize([img2.shape[1], img2.shape[0]])
55
+ face2 = detector.infer(img2)
56
+ assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2)
57
+
58
+ # Match
59
+ distance = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1], args.dis_type)
60
+ print(distance)
61
+ if args.dis_type == 0:
62
+ dis_type = 'Cosine'
63
+ threshold = 0.363
64
+ result = 'same identity' if distance >= threshold else 'different identity'
65
+ elif args.dis_type == 1:
66
+ dis_type = 'Norm-L2'
67
+ threshold = 1.128
68
+ result = 'same identity' if distance <= threshold else 'different identity'
69
+ else:
70
+ raise NotImplementedError()
71
+ print('Using {} distance, threshold {}: {}.'.format(dis_type, threshold, result))
models/face_recognition_sface/sface.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+ import numpy as np
8
+ import cv2 as cv
9
+
10
+ from _testcapi import FLT_MIN
11
+
12
+ class SFace:
13
+ def __init__(self, modelPath):
14
+ self._model = cv.dnn.readNet(modelPath)
15
+ self._input_size = [112, 112]
16
+ self._dst = np.array([
17
+ [38.2946, 51.6963],
18
+ [73.5318, 51.5014],
19
+ [56.0252, 71.7366],
20
+ [41.5493, 92.3655],
21
+ [70.7299, 92.2041]
22
+ ], dtype=np.float32)
23
+ self._dst_mean = np.array([56.0262, 71.9008], dtype=np.float32)
24
+
25
+ @property
26
+ def name(self):
27
+ return self.__class__.__name__
28
+
29
+ def setBackend(self, backend_id):
30
+ self._model.setPreferableBackend(backend_id)
31
+
32
+ def setTarget(self, target_id):
33
+ self._model.setPreferableTarget(target_id)
34
+
35
+ def _preprocess(self, image, bbox):
36
+ aligned_image = self._alignCrop(image, bbox)
37
+ return cv.dnn.blobFromImage(aligned_image)
38
+
39
+ def infer(self, image, bbox):
40
+ # Preprocess
41
+ inputBlob = self._preprocess(image, bbox)
42
+
43
+ # Forward
44
+ self._model.setInput(inputBlob)
45
+ outputBlob = self._model.forward()
46
+
47
+ # Postprocess
48
+ results = self._postprocess(outputBlob)
49
+
50
+ return results
51
+
52
+ def _postprocess(self, outputBlob):
53
+ return outputBlob / cv.norm(outputBlob)
54
+
55
+ def match(self, image1, face1, image2, face2, dis_type=0):
56
+ feature1 = self.infer(image1, face1)
57
+ feature2 = self.infer(image2, face2)
58
+
59
+ if dis_type == 0: # COSINE
60
+ return np.sum(feature1 * feature2)
61
+ elif dis_type == 1: # NORM_L2
62
+ return cv.norm(feature1, feature2)
63
+ else:
64
+ raise NotImplementedError()
65
+
66
+ def _alignCrop(self, image, face):
67
+ # Retrieve landmarks
68
+ if face.shape[-1] == (4 + 5 * 2):
69
+ landmarks = face[4:].reshape(5, 2)
70
+ else:
71
+ raise NotImplementedError()
72
+ warp_mat = self._getSimilarityTransformMatrix(landmarks)
73
+ aligned_image = cv.warpAffine(image, warp_mat, self._input_size, flags=cv.INTER_LINEAR)
74
+ return aligned_image
75
+
76
+ def _getSimilarityTransformMatrix(self, src):
77
+ # compute the mean of src and dst
78
+ src_mean = np.array([np.mean(src[:, 0]), np.mean(src[:, 1])], dtype=np.float32)
79
+ dst_mean = np.array([56.0262, 71.9008], dtype=np.float32)
80
+ # subtract the means from src and dst
81
+ src_demean = src.copy()
82
+ src_demean[:, 0] = src_demean[:, 0] - src_mean[0]
83
+ src_demean[:, 1] = src_demean[:, 1] - src_mean[1]
84
+ dst_demean = self._dst.copy()
85
+ dst_demean[:, 0] = dst_demean[:, 0] - dst_mean[0]
86
+ dst_demean[:, 1] = dst_demean[:, 1] - dst_mean[1]
87
+
88
+ A = np.array([[0., 0.], [0., 0.]], dtype=np.float64)
89
+ for i in range(5):
90
+ A[0][0] += dst_demean[i][0] * src_demean[i][0]
91
+ A[0][1] += dst_demean[i][0] * src_demean[i][1]
92
+ A[1][0] += dst_demean[i][1] * src_demean[i][0]
93
+ A[1][1] += dst_demean[i][1] * src_demean[i][1]
94
+ A = A / 5
95
+
96
+ d = np.array([1.0, 1.0], dtype=np.float64)
97
+ if A[0][0] * A[1][1] - A[0][1] * A[1][0] < 0:
98
+ d[1] = -1
99
+
100
+ T = np.array([
101
+ [1.0, 0.0, 0.0],
102
+ [0.0, 1.0, 0.0],
103
+ [0.0, 0.0, 1.0]
104
+ ], dtype=np.float64)
105
+
106
+ s, u, vt = cv.SVDecomp(A)
107
+ smax = s[0][0] if s[0][0] > s[1][0] else s[1][0]
108
+ tol = smax * 2 * FLT_MIN
109
+ rank = int(0)
110
+ if s[0][0] > tol:
111
+ rank += 1
112
+ if s[1][0] > tol:
113
+ rank += 1
114
+ det_u = u[0][0] * u[1][1] - u[0][1] * u[1][0]
115
+ det_vt = vt[0][0] * vt[1][1] - vt[0][1] * vt[1][0]
116
+ if rank == 1:
117
+ if det_u * det_vt > 0:
118
+ uvt = np.matmul(u, vt)
119
+ T[0][0] = uvt[0][0]
120
+ T[0][1] = uvt[0][1]
121
+ T[1][0] = uvt[1][0]
122
+ T[1][1] = uvt[1][1]
123
+ else:
124
+ temp = d[1]
125
+ d[1] = -1
126
+ D = np.array([[d[0], 0.0], [0.0, d[1]]], dtype=np.float64)
127
+ Dvt = np.matmul(D, vt)
128
+ uDvt = np.matmul(u, Dvt)
129
+ T[0][0] = uDvt[0][0]
130
+ T[0][1] = uDvt[0][1]
131
+ T[1][0] = uDvt[1][0]
132
+ T[1][1] = uDvt[1][1]
133
+ d[1] = temp
134
+ else:
135
+ D = np.array([[d[0], 0.0], [0.0, d[1]]], dtype=np.float64)
136
+ Dvt = np.matmul(D, vt)
137
+ uDvt = np.matmul(u, Dvt)
138
+ T[0][0] = uDvt[0][0]
139
+ T[0][1] = uDvt[0][1]
140
+ T[1][0] = uDvt[1][0]
141
+ T[1][1] = uDvt[1][1]
142
+
143
+ var1 = 0.0
144
+ var2 = 0.0
145
+ for i in range(5):
146
+ var1 += src_demean[i][0] * src_demean[i][0]
147
+ var2 += src_demean[i][1] * src_demean[i][1]
148
+ var1 /= 5
149
+ var2 /= 5
150
+
151
+ scale = 1.0 / (var1 + var2) * (s[0][0] * d[0] + s[1][0] * d[1])
152
+ TS = [
153
+ T[0][0] * src_mean[0] + T[0][1] * src_mean[1],
154
+ T[1][0] * src_mean[0] + T[1][1] * src_mean[1]
155
+ ]
156
+ T[0][2] = dst_mean[0] - scale * TS[0]
157
+ T[1][2] = dst_mean[1] - scale * TS[1]
158
+ T[0][0] *= scale
159
+ T[0][1] *= scale
160
+ T[1][0] *= scale
161
+ T[1][1] *= scale
162
+ return np.array([
163
+ [T[0][0], T[0][1], T[0][2]],
164
+ [T[1][0], T[1][1], T[1][2]]
165
+ ], dtype=np.float64)