|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
|
|
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) |
|
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ |
|
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" |
|
|
|
from mobilenet import MobileNet |
|
|
|
|
|
backend_target_pairs = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], |
|
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], |
|
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], |
|
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] |
|
] |
|
|
|
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.') |
|
parser.add_argument('--input', '-i', type=str, |
|
help='Usage: Set input path to a certain image, omit if using camera.') |
|
parser.add_argument('--model', '-m', type=str, default='image_classification_mobilenetv1_2022apr.onnx', |
|
help='Usage: Set model type, defaults to image_classification_mobilenetv1_2022apr.onnx (v1).') |
|
parser.add_argument('--backend_target', '-bt', type=int, default=0, |
|
help='''Choose one of the backend-target pair to run this demo: |
|
{:d}: (default) OpenCV implementation + CPU, |
|
{:d}: CUDA + GPU (CUDA), |
|
{:d}: CUDA + GPU (CUDA FP16), |
|
{:d}: TIM-VX + NPU, |
|
{:d}: CANN + NPU |
|
'''.format(*[x for x in range(len(backend_target_pairs))])) |
|
parser.add_argument('--top_k', type=int, default=1, |
|
help='Usage: Get top k predictions.') |
|
args = parser.parse_args() |
|
|
|
if __name__ == '__main__': |
|
backend_id = backend_target_pairs[args.backend_target][0] |
|
target_id = backend_target_pairs[args.backend_target][1] |
|
top_k = args.top_k |
|
|
|
model = MobileNet(modelPath=args.model, topK=top_k, backendId=backend_id, targetId=target_id) |
|
|
|
|
|
image = cv.imread(args.input) |
|
image = cv.cvtColor(image, cv.COLOR_BGR2RGB) |
|
image = cv.resize(image, dsize=(256, 256)) |
|
image = image[16:240, 16:240, :] |
|
|
|
|
|
result = model.infer(image) |
|
|
|
|
|
print('label: {}'.format(result)) |
|
|