|
#include "opencv2/opencv.hpp" |
|
|
|
#include <map> |
|
#include <vector> |
|
#include <string> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace dnn; |
|
|
|
std::vector<std::pair<int, int>> backend_target_pairs = { |
|
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, |
|
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, |
|
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, |
|
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, |
|
{DNN_BACKEND_CANN, DNN_TARGET_NPU} |
|
}; |
|
|
|
class FER |
|
{ |
|
private: |
|
Net model; |
|
string modelPath; |
|
float std[5][2] = { |
|
{38.2946, 51.6963}, |
|
{73.5318, 51.5014}, |
|
{56.0252, 71.7366}, |
|
{41.5493, 92.3655}, |
|
{70.7299, 92.2041} |
|
}; |
|
vector<String> expressionEnum = { |
|
"angry", "disgust", "fearful", |
|
"happy", "neutral", "sad", "surprised" |
|
}; |
|
Mat stdPoints = Mat(5, 2, CV_32F, this->std); |
|
Size patchSize = Size(112,112); |
|
Scalar imageMean = Scalar(0.5,0.5,0.5); |
|
Scalar imageStd = Scalar(0.5,0.5,0.5); |
|
|
|
const String inputNames = "data"; |
|
const String outputNames = "label"; |
|
|
|
int backend_id; |
|
int target_id; |
|
|
|
public: |
|
FER(const string& modelPath, |
|
int backend_id = 0, |
|
int target_id = 0) |
|
: modelPath(modelPath), backend_id(backend_id), target_id(target_id) |
|
{ |
|
this->model = readNet(modelPath); |
|
this->model.setPreferableBackend(backend_id); |
|
this->model.setPreferableTarget(target_id); |
|
} |
|
|
|
Mat preprocess(const Mat image, const Mat points) |
|
{ |
|
|
|
Mat transformation = estimateAffine2D(points, this->stdPoints); |
|
Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type()); |
|
warpAffine(image, aligned, transformation, this->patchSize); |
|
|
|
|
|
aligned.convertTo(aligned, CV_32F, 1.0 / 255.0); |
|
aligned -= imageMean; |
|
aligned /= imageStd; |
|
|
|
return blobFromImage(aligned);; |
|
} |
|
|
|
String infer(const Mat image, const Mat facePoints) |
|
{ |
|
Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5); |
|
Mat inputBlob = preprocess(image, points); |
|
|
|
this->model.setInput(inputBlob, this->inputNames); |
|
Mat outputBlob = this->model.forward(this->outputNames); |
|
|
|
Point maxLoc; |
|
minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc); |
|
|
|
return getDesc(maxLoc.x); |
|
} |
|
|
|
String getDesc(int ind) |
|
{ |
|
|
|
if (ind >= 0 && ind < this->expressionEnum.size()) |
|
{ |
|
return this->expressionEnum[ind]; |
|
} |
|
else |
|
{ |
|
cerr << "Error: Index out of bounds." << endl; |
|
return ""; |
|
} |
|
} |
|
|
|
}; |
|
|
|
class YuNet |
|
{ |
|
public: |
|
YuNet(const string& model_path, |
|
const Size& input_size = Size(320, 320), |
|
float conf_threshold = 0.6f, |
|
float nms_threshold = 0.3f, |
|
int top_k = 5000, |
|
int backend_id = 0, |
|
int target_id = 0) |
|
: model_path_(model_path), input_size_(input_size), |
|
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold), |
|
top_k_(top_k), backend_id_(backend_id), target_id_(target_id) |
|
{ |
|
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); |
|
} |
|
|
|
void setBackendAndTarget(int backend_id, int target_id) |
|
{ |
|
backend_id_ = backend_id; |
|
target_id_ = target_id; |
|
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); |
|
} |
|
|
|
|
|
|
|
void setInputSize(const Size& input_size) |
|
{ |
|
input_size_ = input_size; |
|
model->setInputSize(input_size_); |
|
} |
|
|
|
Mat infer(const Mat image) |
|
{ |
|
Mat res; |
|
model->detect(image, res); |
|
return res; |
|
} |
|
|
|
private: |
|
Ptr<FaceDetectorYN> model; |
|
|
|
string model_path_; |
|
Size input_size_; |
|
float conf_threshold_; |
|
float nms_threshold_; |
|
int top_k_; |
|
int backend_id_; |
|
int target_id_; |
|
}; |
|
|
|
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector<String> expressions, float fps = -1.f) |
|
{ |
|
static cv::Scalar box_color{0, 255, 0}; |
|
static std::vector<cv::Scalar> landmark_color{ |
|
cv::Scalar(255, 0, 0), |
|
cv::Scalar( 0, 0, 255), |
|
cv::Scalar( 0, 255, 0), |
|
cv::Scalar(255, 0, 255), |
|
cv::Scalar( 0, 255, 255) |
|
}; |
|
static cv::Scalar text_color{0, 255, 0}; |
|
|
|
auto output_image = image.clone(); |
|
|
|
if (fps >= 0) |
|
{ |
|
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); |
|
} |
|
|
|
for (int i = 0; i < faces.rows; ++i) |
|
{ |
|
|
|
int x1 = static_cast<int>(faces.at<float>(i, 0)); |
|
int y1 = static_cast<int>(faces.at<float>(i, 1)); |
|
int w = static_cast<int>(faces.at<float>(i, 2)); |
|
int h = static_cast<int>(faces.at<float>(i, 3)); |
|
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2); |
|
|
|
|
|
String exp = expressions[i]; |
|
cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color); |
|
|
|
|
|
for (int j = 0; j < landmark_color.size(); ++j) |
|
{ |
|
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5)); |
|
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2); |
|
} |
|
} |
|
return output_image; |
|
} |
|
|
|
string keys = |
|
"{ help h | | Print help message. }" |
|
"{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }" |
|
"{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" |
|
"0: (default) OpenCV implementation + CPU,\n" |
|
"1: CUDA + GPU (CUDA),\n" |
|
"2: CUDA + GPU (CUDA FP16),\n" |
|
"3: TIM-VX + NPU,\n" |
|
"4: CANN + NPU}" |
|
"{ save s | false | Specify to save results.}" |
|
"{ vis v | true | Specify to open a window for result visualization.}" |
|
; |
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
|
|
parser.about("Facial Expression Recognition"); |
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
string modelPath = parser.get<string>("model"); |
|
string yunetModelPath = parser.get<string>("yunet_model"); |
|
string inputPath = parser.get<string>("input"); |
|
uint8_t backendTarget = parser.get<uint8_t>("backend_target"); |
|
bool saveFlag = parser.get<bool>("save"); |
|
bool visFlag = parser.get<bool>("vis"); |
|
|
|
if (modelPath.empty()) |
|
CV_Error(Error::StsError, "Model file " + modelPath + " not found"); |
|
|
|
if (yunetModelPath.empty()) |
|
CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found"); |
|
|
|
YuNet faceDetectionModel(yunetModelPath); |
|
FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); |
|
|
|
VideoCapture cap; |
|
if (!inputPath.empty()) |
|
cap.open(samples::findFile(inputPath)); |
|
else |
|
cap.open(0); |
|
|
|
if (!cap.isOpened()) |
|
CV_Error(Error::StsError, "Cannot opend video or file"); |
|
|
|
Mat frame; |
|
static const std::string kWinName = "Facial Expression Demo"; |
|
|
|
|
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
|
|
if (frame.empty()) |
|
{ |
|
if(inputPath.empty()) |
|
cout << "Frame is empty" << endl; |
|
break; |
|
} |
|
|
|
faceDetectionModel.setInputSize(frame.size()); |
|
|
|
Mat faces = faceDetectionModel.infer(frame); |
|
vector<String> expressions; |
|
|
|
for (int i = 0; i < faces.rows; ++i) |
|
{ |
|
Mat face = faces.row(i); |
|
String exp = expressionRecognitionModel.infer(frame, face); |
|
expressions.push_back(exp); |
|
|
|
int x1 = static_cast<int>(faces.at<float>(i, 0)); |
|
int y1 = static_cast<int>(faces.at<float>(i, 1)); |
|
int w = static_cast<int>(faces.at<float>(i, 2)); |
|
int h = static_cast<int>(faces.at<float>(i, 3)); |
|
float conf = faces.at<float>(i, 14); |
|
|
|
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str()); |
|
|
|
} |
|
|
|
Mat res_frame = visualize(frame, faces, expressions); |
|
|
|
if(visFlag || inputPath.empty()) |
|
{ |
|
imshow(kWinName, res_frame); |
|
if(!inputPath.empty()) |
|
waitKey(0); |
|
} |
|
if(saveFlag) |
|
{ |
|
cout << "Results are saved to result.jpg" << endl; |
|
|
|
cv::imwrite("result.jpg", res_frame); |
|
} |
|
} |
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|