LSIbabnikz
Adding eDifFIQA(T) a light-weight model for face image quality assessment. (#263)
4c44ba2
| # This file is part of OpenCV Zoo project. | |
| # It is subject to the license terms in the LICENSE file found in the same directory. | |
| import sys | |
| import argparse | |
| import numpy as np | |
| import cv2 as cv | |
| # Check OpenCV version | |
| opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) | |
| assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ | |
| "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" | |
| sys.path.append('../face_detection_yunet') | |
| from yunet import YuNet | |
| from ediffiqa import eDifFIQA | |
| # Valid combinations of backends and targets | |
| backend_target_pairs = [ | |
| [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], | |
| [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], | |
| [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], | |
| [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], | |
| [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] | |
| ] | |
| REFERENCE_FACIAL_POINTS = [ | |
| [38.2946 , 51.6963 ], | |
| [73.5318 , 51.5014 ], | |
| [56.0252 , 71.7366 ], | |
| [41.5493 , 92.3655 ], | |
| [70.729904, 92.2041 ] | |
| ] | |
| parser = argparse.ArgumentParser(description='eDifFIQA: Towards Efficient Face Image Quality Assessment based on Denoising Diffusion Probabilistic Models (https://github.com/LSIbabnikz/eDifFIQA).') | |
| parser.add_argument('--input', '-i', type=str, default='./sample_image.jpg', | |
| help='Usage: Set input to a certain image, defaults to "./sample_image.jpg".') | |
| parser.add_argument('--backend_target', '-bt', type=int, default=0, | |
| help='''Choose one of the backend-target pair to run this demo: | |
| {:d}: (default) OpenCV implementation + CPU, | |
| {:d}: CUDA + GPU (CUDA), | |
| {:d}: CUDA + GPU (CUDA FP16), | |
| {:d}: TIM-VX + NPU, | |
| {:d}: CANN + NPU | |
| '''.format(*[x for x in range(len(backend_target_pairs))])) | |
| ediffiqa_parser = parser.add_argument_group("eDifFIQA", " Parameters of eDifFIQA - For face image quality assessment ") | |
| ediffiqa_parser.add_argument('--model_q', '-mq', type=str, default='ediffiqa_tiny_jun2024.onnx', | |
| help="Usage: Set model type, defaults to 'ediffiqa_tiny_jun2024.onnx'.") | |
| yunet_parser = parser.add_argument_group("YuNet", " Parameters of YuNet - For face detection ") | |
| yunet_parser.add_argument('--model_d', '-md', type=str, default='../face_detection_yunet/face_detection_yunet_2023mar.onnx', | |
| help="Usage: Set model type, defaults to '../face_detection_yunet/face_detection_yunet_2023mar.onnx'.") | |
| yunet_parser.add_argument('--conf_threshold', type=float, default=0.9, | |
| help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.') | |
| yunet_parser.add_argument('--nms_threshold', type=float, default=0.3, | |
| help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') | |
| yunet_parser.add_argument('--top_k', type=int, default=5000, | |
| help='Usage: Keep top_k bounding boxes before NMS.') | |
| args = parser.parse_args() | |
| def visualize(image, results): | |
| output = image.copy() | |
| cv.putText(output, f"{results:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, .8, (0, 0, 255)) | |
| return output | |
| def align_image(image, detection_data): | |
| """ Performs face alignment on given image using the provided face landmarks (keypoints) | |
| Args: | |
| image (np.array): Unaligned face image | |
| detection_data (np.array): Detection data provided by YuNet | |
| Returns: | |
| np.array: Aligned image | |
| """ | |
| reference_pts = REFERENCE_FACIAL_POINTS | |
| ref_pts = np.float32(reference_pts) | |
| ref_pts_shp = ref_pts.shape | |
| if ref_pts_shp[0] == 2: | |
| ref_pts = ref_pts.T | |
| # Get source keypoints from YuNet detection data | |
| src_pts = np.float32(detection_data[0][4:-1]).reshape(5,2) | |
| src_pts_shp = src_pts.shape | |
| if src_pts_shp[0] == 2: | |
| src_pts = src_pts.T | |
| tfm, _ = cv.estimateAffinePartial2D(src_pts, ref_pts, method=cv.LMEDS) | |
| face_img = cv.warpAffine(image, tfm, (112, 112)) | |
| return face_img | |
| if __name__ == '__main__': | |
| backend_id = backend_target_pairs[args.backend_target][0] | |
| target_id = backend_target_pairs[args.backend_target][1] | |
| # Instantiate eDifFIQA(T) (quality assesment) | |
| model_quality = eDifFIQA( | |
| modelPath=args.model_q, | |
| inputSize=[112, 112], | |
| ) | |
| model_quality.setBackendAndTarget( | |
| backendId=backend_id, | |
| targetId=target_id | |
| ) | |
| # Instantiate YuNet (face detection) | |
| model_detect = YuNet( | |
| modelPath=args.model_d, | |
| inputSize=[320, 320], | |
| confThreshold=args.conf_threshold, | |
| nmsThreshold=args.nms_threshold, | |
| topK=args.top_k, | |
| backendId=backend_id, | |
| targetId=target_id | |
| ) | |
| # If input is an image | |
| image = cv.imread(args.input) | |
| h, w, _ = image.shape | |
| # Face Detection | |
| model_detect.setInputSize([w, h]) | |
| results_detect = model_detect.infer(image) | |
| assert results_detect.size != 0, f" Face could not be detected in: {args.input}. " | |
| # Face Alignment | |
| aligned_image = align_image(image, results_detect) | |
| # Quality Assesment | |
| quality = model_quality.infer(aligned_image) | |
| quality = np.squeeze(quality).item() | |
| viz_image = visualize(aligned_image, quality) | |
| print(f" Quality score of {args.input}: {quality:.3f} ") | |
| print(f" Saving visualization to results.jpg. ") | |
| cv.imwrite('results.jpg', viz_image) | |