VisCPM-Chat / processing_viscpmchatbee.py
pyx9913
feat: 🎸 add chat model code
aa60bbf
import cv2
import numpy as np
import torch
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import RandomResizedCropAndInterpolation
from torchvision import transforms
import urllib
from tqdm import tqdm
from cpm_live.tokenizers import CPMBeeTokenizer
from torch.utils.data import default_collate
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import TypedDict
from numpy.typing import NDArray
import importlib.machinery
import importlib.util
import types
import random
from transformers.image_utils import make_list_of_images
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from transformers import TensorType
import json
# aug functions
def identity_func(img):
return img
def autocontrast_func(img, cutoff=0):
'''
same output as PIL.ImageOps.autocontrast
'''
n_bins = 256
def tune_channel(ch):
n = ch.size
cut = cutoff * n // 100
if cut == 0:
high, low = ch.max(), ch.min()
else:
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
low = np.argwhere(np.cumsum(hist) > cut)
low = 0 if low.shape[0] == 0 else low[0]
high = np.argwhere(np.cumsum(hist[::-1]) > cut)
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
if high <= low:
table = np.arange(n_bins)
else:
scale = (n_bins - 1) / (high - low)
table = np.arange(n_bins) * scale - low * scale
table[table < 0] = 0
table[table > n_bins - 1] = n_bins - 1
table = table.clip(0, 255).astype(np.uint8)
return table[ch]
channels = [tune_channel(ch) for ch in cv2.split(img)]
out = cv2.merge(channels)
return out
def equalize_func(img):
'''
same output as PIL.ImageOps.equalize
PIL's implementation is different from cv2.equalize
'''
n_bins = 256
def tune_channel(ch):
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
non_zero_hist = hist[hist != 0].reshape(-1)
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
if step == 0:
return ch
n = np.empty_like(hist)
n[0] = step // 2
n[1:] = hist[:-1]
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
return table[ch]
channels = [tune_channel(ch) for ch in cv2.split(img)]
out = cv2.merge(channels)
return out
def rotate_func(img, degree, fill=(0, 0, 0)):
'''
like PIL, rotate by degree, not radians
'''
H, W = img.shape[0], img.shape[1]
center = W / 2, H / 2
M = cv2.getRotationMatrix2D(center, degree, 1)
out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
return out
def solarize_func(img, thresh=128):
'''
same output as PIL.ImageOps.posterize
'''
table = np.array([el if el < thresh else 255 - el for el in range(256)])
table = table.clip(0, 255).astype(np.uint8)
out = table[img]
return out
def color_func(img, factor):
'''
same output as PIL.ImageEnhance.Color
'''
# implementation according to PIL definition, quite slow
# degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
# out = blend(degenerate, img, factor)
# M = (
# np.eye(3) * factor
# + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
# )[np.newaxis, np.newaxis, :]
M = (
np.float32([
[0.886, -0.114, -0.114],
[-0.587, 0.413, -0.587],
[-0.299, -0.299, 0.701]]) * factor
+ np.float32([[0.114], [0.587], [0.299]])
)
out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
return out
def contrast_func(img, factor):
"""
same output as PIL.ImageEnhance.Contrast
"""
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
table = np.array([(
el - mean) * factor + mean
for el in range(256)
]).clip(0, 255).astype(np.uint8)
out = table[img]
return out
def brightness_func(img, factor):
'''
same output as PIL.ImageEnhance.Contrast
'''
table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
out = table[img]
return out
def sharpness_func(img, factor):
'''
The differences the this result and PIL are all on the 4 boundaries, the center
areas are same
'''
kernel = np.ones((3, 3), dtype=np.float32)
kernel[1][1] = 5
kernel /= 13
degenerate = cv2.filter2D(img, -1, kernel)
if factor == 0.0:
out = degenerate
elif factor == 1.0:
out = img
else:
out = img.astype(np.float32)
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
out = out.astype(np.uint8)
return out
def shear_x_func(img, factor, fill=(0, 0, 0)):
H, W = img.shape[0], img.shape[1]
M = np.float32([[1, factor, 0], [0, 1, 0]])
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
return out
def translate_x_func(img, offset, fill=(0, 0, 0)):
'''
same output as PIL.Image.transform
'''
H, W = img.shape[0], img.shape[1]
M = np.float32([[1, 0, -offset], [0, 1, 0]])
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
return out
def translate_y_func(img, offset, fill=(0, 0, 0)):
'''
same output as PIL.Image.transform
'''
H, W = img.shape[0], img.shape[1]
M = np.float32([[1, 0, 0], [0, 1, -offset]])
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
return out
def posterize_func(img, bits):
'''
same output as PIL.ImageOps.posterize
'''
out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
return out
def shear_y_func(img, factor, fill=(0, 0, 0)):
H, W = img.shape[0], img.shape[1]
M = np.float32([[1, 0, 0], [factor, 1, 0]])
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
return out
def cutout_func(img, pad_size, replace=(0, 0, 0)):
replace = np.array(replace, dtype=np.uint8)
H, W = img.shape[0], img.shape[1]
rh, rw = np.random.random(2)
pad_size = pad_size // 2
ch, cw = int(rh * H), int(rw * W)
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
out = img.copy()
out[x1:x2, y1:y2, :] = replace
return out
# level to args
def enhance_level_to_args(MAX_LEVEL):
def level_to_args(level):
return ((level / MAX_LEVEL) * 1.8 + 0.1,)
return level_to_args
def shear_level_to_args(MAX_LEVEL, replace_value):
def level_to_args(level):
level = (level / MAX_LEVEL) * 0.3
if np.random.random() > 0.5:
level = -level
return (level, replace_value)
return level_to_args
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
def level_to_args(level):
level = (level / MAX_LEVEL) * float(translate_const)
if np.random.random() > 0.5:
level = -level
return (level, replace_value)
return level_to_args
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
def level_to_args(level):
level = int((level / MAX_LEVEL) * cutout_const)
return (level, replace_value)
return level_to_args
def solarize_level_to_args(MAX_LEVEL):
def level_to_args(level):
level = int((level / MAX_LEVEL) * 256)
return (level, )
return level_to_args
def none_level_to_args(level):
return ()
def posterize_level_to_args(MAX_LEVEL):
def level_to_args(level):
level = int((level / MAX_LEVEL) * 4)
return (level, )
return level_to_args
def rotate_level_to_args(MAX_LEVEL, replace_value):
def level_to_args(level):
level = (level / MAX_LEVEL) * 30
if np.random.random() < 0.5:
level = -level
return (level, replace_value)
return level_to_args
func_dict = {
'Identity': identity_func,
'AutoContrast': autocontrast_func,
'Equalize': equalize_func,
'Rotate': rotate_func,
'Solarize': solarize_func,
'Color': color_func,
'Contrast': contrast_func,
'Brightness': brightness_func,
'Sharpness': sharpness_func,
'ShearX': shear_x_func,
'TranslateX': translate_x_func,
'TranslateY': translate_y_func,
'Posterize': posterize_func,
'ShearY': shear_y_func,
}
translate_const = 10
MAX_LEVEL = 10
replace_value = (128, 128, 128)
arg_dict = {
'Identity': none_level_to_args,
'AutoContrast': none_level_to_args,
'Equalize': none_level_to_args,
'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
'Solarize': solarize_level_to_args(MAX_LEVEL),
'Color': enhance_level_to_args(MAX_LEVEL),
'Contrast': enhance_level_to_args(MAX_LEVEL),
'Brightness': enhance_level_to_args(MAX_LEVEL),
'Sharpness': enhance_level_to_args(MAX_LEVEL),
'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
'TranslateX': translate_level_to_args(
translate_const, MAX_LEVEL, replace_value
),
'TranslateY': translate_level_to_args(
translate_const, MAX_LEVEL, replace_value
),
'Posterize': posterize_level_to_args(MAX_LEVEL),
'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
}
class RandomAugment(object):
def __init__(self, N=2, M=10, isPIL=False, augs=[]):
self.N = N
self.M = M
self.isPIL = isPIL
if augs:
self.augs = augs
else:
self.augs = list(arg_dict.keys())
def get_random_ops(self):
sampled_ops = np.random.choice(self.augs, self.N)
return [(op, 0.5, self.M) for op in sampled_ops]
def __call__(self, img):
if self.isPIL:
img = np.array(img)
ops = self.get_random_ops()
for name, prob, level in ops:
if np.random.random() > prob:
continue
args = arg_dict[name](level)
img = func_dict[name](img, *args)
return img
def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic'):
if is_train:
t = [
RandomResizedCropAndInterpolation(
input_size, scale=(0.5, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
transforms.RandomHorizontalFlip(),
]
if randaug:
t.append(
RandomAugment(
2, 7, isPIL=True,
augs=[
'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate',
]))
t += [
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
]
t = transforms.Compose(t)
else:
t = transforms.Compose([
transforms.Resize((input_size, input_size),
interpolation=transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD)
])
return t
class VisCpmChatBeeImageProcessor(BaseImageProcessor):
def __init__(self, is_train, randaug=True, input_size=224, interpolation='bicubic', **kwargs):
super().__init__(**kwargs)
self.is_train = is_train
self.randaug = randaug
self.input_size = input_size
self.interpolation = interpolation
self._transform = build_transform(is_train, randaug=randaug, input_size=input_size, interpolation=interpolation)
def preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs) -> BatchFeature:
images = make_list_of_images(images)
images = [self._transform(image) for image in images]
images = torch.tensor([image.numpy() for image in images])
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
"""
dictionary = self.to_dict()
for key, value in dictionary.items():
if isinstance(value, np.ndarray):
dictionary[key] = value.tolist()
# make sure private name "_processor_class" is correctly
# saved as "processor_class"
_processor_class = dictionary.pop("_processor_class", None)
if _processor_class is not None:
dictionary["processor_class"] = _processor_class
_transform = dictionary.pop("_transform", None)
if _transform is not None:
dictionary["_transform"] = str(type(_transform))
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"