Update README.md
Browse files
README.md
CHANGED
@@ -1,28 +1,34 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- 出色的中文、英文重排序能力。
|
5 |
- 出色的中英跨语言重排序能力。
|
6 |
|
7 |
-
|
8 |
|
9 |
欢迎关注 RAG 套件系列:
|
10 |
|
11 |
-
- 检索模型:[
|
12 |
-
- 重排模型:[
|
13 |
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
14 |
|
15 |
-
**
|
16 |
|
17 |
- Exceptional Chinese and English re-ranking capabilities.
|
18 |
- Outstanding cross-lingual re-ranking capabilities between Chinese and English.
|
19 |
|
20 |
-
|
21 |
|
22 |
We also invite you to explore the RAG toolkit series:
|
23 |
|
24 |
-
- Retrieval Model: [
|
25 |
-
- Re-ranking Model: [
|
26 |
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
27 |
|
28 |
## 模型信息 Model Information
|
@@ -39,7 +45,7 @@ We also invite you to explore the RAG toolkit series:
|
|
39 |
|
40 |
本模型支持指令,输入格式如下:
|
41 |
|
42 |
-
|
43 |
|
44 |
```
|
45 |
<s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
|
@@ -59,7 +65,7 @@ For example:
|
|
59 |
|
60 |
也可以不提供指令,即采取如下格式:
|
61 |
|
62 |
-
|
63 |
|
64 |
```
|
65 |
<s>Query: {{ query }}</s>{{ document }}
|
@@ -83,7 +89,7 @@ from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassific
|
|
83 |
import torch
|
84 |
import numpy as np
|
85 |
|
86 |
-
model_name = "openbmb/
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
88 |
tokenizer.padding_side = "right"
|
89 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
|
@@ -146,7 +152,7 @@ We re-rank top-100 docments from `bge-large-zh-v1.5` in C-MTEB/Retrieval and fro
|
|
146 |
| bge-reranker-v2-minicpm-28 | 73.51 | 59.86 |
|
147 |
| bge-reranker-v2-gemma | 71.74 | 60.71 |
|
148 |
| bge-reranker-v2.5-gemma2 | - | **63.67** |
|
149 |
-
|
|
150 |
|
151 |
### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
|
152 |
|
@@ -160,14 +166,14 @@ We re-rank top-100 documents from `bge-m3` (Dense).
|
|
160 |
| jina-reranker-v2-base-multilingual | 69.33 | 36.66 | 50.03 |
|
161 |
| bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
|
162 |
| gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
|
163 |
-
|
|
164 |
|
165 |
## 许可证 License
|
166 |
|
167 |
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
|
168 |
-
-
|
169 |
-
-
|
170 |
|
171 |
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
172 |
-
* The usage of
|
173 |
-
* The models and weights of
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
base_model: openbmb/MiniCPM-2B-dpo-bf16
|
6 |
+
---
|
7 |
+
## RankCPM-R
|
8 |
+
|
9 |
+
**RankCPM-R** 是面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发的中英双语言文本重排序模型,有如下特点:
|
10 |
- 出色的中文、英文重排序能力。
|
11 |
- 出色的中英跨语言重排序能力。
|
12 |
|
13 |
+
RankCPM-R 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。
|
14 |
|
15 |
欢迎关注 RAG 套件系列:
|
16 |
|
17 |
+
- 检索模型:[RankCPM-E](https://huggingface.co/openbmb/RankCPM-E)
|
18 |
+
- 重排模型:[RankCPM-R](https://huggingface.co/openbmb/RankCPM-R)
|
19 |
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
20 |
|
21 |
+
**RankCPM-R** is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. and THUNLP, featuring:
|
22 |
|
23 |
- Exceptional Chinese and English re-ranking capabilities.
|
24 |
- Outstanding cross-lingual re-ranking capabilities between Chinese and English.
|
25 |
|
26 |
+
RankCPM-R is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
|
27 |
|
28 |
We also invite you to explore the RAG toolkit series:
|
29 |
|
30 |
+
- Retrieval Model: [RankCPM-E](https://huggingface.co/openbmb/RankCPM-E)
|
31 |
+
- Re-ranking Model: [RankCPM-R](https://huggingface.co/openbmb/RankCPM-R)
|
32 |
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
33 |
|
34 |
## 模型信息 Model Information
|
|
|
45 |
|
46 |
本模型支持指令,输入格式如下:
|
47 |
|
48 |
+
RankCPM-R supports instructions in the following format:
|
49 |
|
50 |
```
|
51 |
<s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
|
|
|
65 |
|
66 |
也可以不提供指令,即采取如下格式:
|
67 |
|
68 |
+
RankCPM-R also works in instruction-free mode in the following format:
|
69 |
|
70 |
```
|
71 |
<s>Query: {{ query }}</s>{{ document }}
|
|
|
89 |
import torch
|
90 |
import numpy as np
|
91 |
|
92 |
+
model_name = "openbmb/RankCPM-R"
|
93 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
94 |
tokenizer.padding_side = "right"
|
95 |
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
|
|
|
152 |
| bge-reranker-v2-minicpm-28 | 73.51 | 59.86 |
|
153 |
| bge-reranker-v2-gemma | 71.74 | 60.71 |
|
154 |
| bge-reranker-v2.5-gemma2 | - | **63.67** |
|
155 |
+
| RankCPM-R | **76.79** | 61.32 |
|
156 |
|
157 |
### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results
|
158 |
|
|
|
166 |
| jina-reranker-v2-base-multilingual | 69.33 | 36.66 | 50.03 |
|
167 |
| bge-reranker-v2-m3 | 69.75 | 40.98 | 49.67 |
|
168 |
| gte-multilingual-reranker-base | 68.51 | 38.74 | 45.3 |
|
169 |
+
| RankCPM-R | **71.73** | **43.65** | **50.59** |
|
170 |
|
171 |
## 许可证 License
|
172 |
|
173 |
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
|
174 |
+
- RankCPM-R 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
|
175 |
+
- RankCPM-R 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
|
176 |
|
177 |
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
178 |
+
* The usage of RankCPM-R model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
179 |
+
* The models and weights of RankCPM-R are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, RankCPM-R weights are also available for free commercial use.
|