Commit
•
3d06185
1
Parent(s):
1ecca60
Update README.md (#126)
Browse files- Update README.md (1eaca33abac3ee283e44e20ac60f50fc304a7f66)
Co-authored-by: Vaibhav Srivastav <reach-vb@users.noreply.huggingface.co>
README.md
CHANGED
@@ -163,7 +163,7 @@ checkpoints are summarised in the following table with links to the models on th
|
|
163 |
|
164 |
## Usage
|
165 |
|
166 |
-
Whisper `large-v3` is supported in Hugging Face 🤗 Transformers
|
167 |
install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy
|
168 |
audio dataset from the Hugging Face Hub:
|
169 |
|
@@ -172,11 +172,10 @@ pip install --upgrade pip
|
|
172 |
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
|
173 |
```
|
174 |
|
|
|
|
|
175 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
176 |
-
class to transcribe audio files
|
177 |
-
long-form audio files, which in-practice is 9x faster than the sequential algorithm proposed by OpenAI
|
178 |
-
(see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). The batch size should
|
179 |
-
be set based on the specifications of your device:
|
180 |
|
181 |
```python
|
182 |
import torch
|
@@ -258,42 +257,260 @@ result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "fren
|
|
258 |
print(result["chunks"])
|
259 |
```
|
260 |
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
|
|
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
```
|
271 |
pip install flash-attn --no-build-isolation
|
272 |
```
|
273 |
|
274 |
-
|
275 |
|
276 |
```diff
|
277 |
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
278 |
-
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True,
|
279 |
```
|
280 |
|
281 |
-
|
282 |
|
283 |
-
If your GPU does not support Flash Attention, we recommend making use of [
|
284 |
-
|
|
|
285 |
|
|
|
|
|
|
|
|
|
286 |
```
|
287 |
-
pip install --upgrade optimum
|
288 |
-
```
|
289 |
|
290 |
-
|
|
|
|
|
|
|
|
|
291 |
|
292 |
```diff
|
293 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
294 |
-
+ model =
|
295 |
```
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
## Fine-Tuning
|
298 |
|
299 |
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|
|
|
163 |
|
164 |
## Usage
|
165 |
|
166 |
+
Whisper `large-v3` is supported in Hugging Face 🤗 Transformers. To run the model, first
|
167 |
install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy
|
168 |
audio dataset from the Hugging Face Hub:
|
169 |
|
|
|
172 |
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
|
173 |
```
|
174 |
|
175 |
+
### Short-Form Transcription
|
176 |
+
|
177 |
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
178 |
+
class to transcribe short-form audio files (< 30-seconds) as follows:
|
|
|
|
|
|
|
179 |
|
180 |
```python
|
181 |
import torch
|
|
|
257 |
print(result["chunks"])
|
258 |
```
|
259 |
|
260 |
+
<details>
|
261 |
+
|
262 |
+
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
263 |
+
|
264 |
+
Ad-hoc generation arguments can be passed to `model.generate`, including `num_beams` for beam-search, `return_timestamps`
|
265 |
+
for segment-level timestamps, and `prompt_ids` for prompting. See the [docstrings](https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate)
|
266 |
+
for more details.
|
267 |
+
|
268 |
+
```python
|
269 |
+
import torch
|
270 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
271 |
+
from datasets import Audio, load_dataset
|
272 |
+
|
273 |
|
274 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
275 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
276 |
|
277 |
+
model_id = "openai/whisper-large-v3"
|
278 |
+
|
279 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
280 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
281 |
+
)
|
282 |
+
model.to(device)
|
283 |
+
|
284 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
285 |
+
|
286 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
287 |
+
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
288 |
+
sample = dataset[0]["audio"]
|
289 |
|
290 |
+
input_features = processor(
|
291 |
+
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
|
292 |
+
).input_features
|
293 |
+
|
294 |
+
input_features = input_features.to(device, dtype=torch_dtype)
|
295 |
+
|
296 |
+
gen_kwargs = {
|
297 |
+
"max_new_tokens": 128,
|
298 |
+
"num_beams": 1,
|
299 |
+
"return_timestamps": False,
|
300 |
+
}
|
301 |
+
|
302 |
+
pred_ids = model.generate(input_features, **gen_kwargs)
|
303 |
+
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=gen_kwargs["return_timestamps"])
|
304 |
+
|
305 |
+
print(pred_text)
|
306 |
+
```
|
307 |
+
|
308 |
+
</details>
|
309 |
+
|
310 |
+
### Sequential Long-Form
|
311 |
+
|
312 |
+
This algorithm uses a sliding window for buffered inference of long audio files (> 30-seconds),
|
313 |
+
and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
314 |
+
|
315 |
+
The sequential long-form algorithm should be used in either of the following scenarios:
|
316 |
+
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
317 |
+
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
|
318 |
+
|
319 |
+
The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
320 |
+
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
321 |
+
|
322 |
+
```python
|
323 |
+
import torch
|
324 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
325 |
+
from datasets import load_dataset
|
326 |
+
|
327 |
+
|
328 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
329 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
330 |
+
|
331 |
+
model_id = "openai/whisper-large-v3"
|
332 |
+
|
333 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
334 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
335 |
+
)
|
336 |
+
model.to(device)
|
337 |
+
|
338 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
339 |
+
|
340 |
+
pipe = pipeline(
|
341 |
+
"automatic-speech-recognition",
|
342 |
+
model=model,
|
343 |
+
tokenizer=processor.tokenizer,
|
344 |
+
feature_extractor=processor.feature_extractor,
|
345 |
+
max_new_tokens=128,
|
346 |
+
torch_dtype=torch_dtype,
|
347 |
+
device=device,
|
348 |
+
)
|
349 |
+
|
350 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
351 |
+
sample = dataset[0]["audio"]
|
352 |
+
|
353 |
+
result = pipe(sample)
|
354 |
+
print(result["text"])
|
355 |
+
```
|
356 |
+
|
357 |
+
<details>
|
358 |
+
|
359 |
+
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
|
360 |
+
|
361 |
+
```python
|
362 |
+
import torch
|
363 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
364 |
+
from datasets import Audio, load_dataset
|
365 |
+
|
366 |
+
|
367 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
368 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
369 |
+
|
370 |
+
model_id = "openai/whisper-large-v3"
|
371 |
+
|
372 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
373 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
374 |
+
)
|
375 |
+
model.to(device)
|
376 |
+
|
377 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
378 |
+
|
379 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
380 |
+
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
|
381 |
+
sample = dataset[0]["audio"]
|
382 |
+
|
383 |
+
inputs = processor(
|
384 |
+
sample["array"],
|
385 |
+
sampling_rate=sample["sampling_rate"],
|
386 |
+
return_tensors="pt",
|
387 |
+
truncation=False,
|
388 |
+
padding="longest",
|
389 |
+
return_attention_mask=True,
|
390 |
+
)
|
391 |
+
inputs = inputs.to(device, dtype=torch_dtype)
|
392 |
+
|
393 |
+
gen_kwargs = {
|
394 |
+
"max_new_tokens": 448,
|
395 |
+
"num_beams": 1,
|
396 |
+
"condition_on_prev_tokens": False,
|
397 |
+
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
|
398 |
+
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
399 |
+
"logprob_threshold": -1.0,
|
400 |
+
"no_speech_threshold": 0.6,
|
401 |
+
"return_timestamps": True,
|
402 |
+
}
|
403 |
+
|
404 |
+
pred_ids = model.generate(**i nputs, **gen_kwargs)
|
405 |
+
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
|
406 |
+
|
407 |
+
print(pred_text)
|
408 |
+
```
|
409 |
+
|
410 |
+
</details>
|
411 |
+
|
412 |
+
### Chunked Long-Form
|
413 |
+
|
414 |
+
large-v3 remains compatible with the Transformers chunked long-form algorithm. This algorithm should be used when
|
415 |
+
a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
416 |
+
the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the
|
417 |
+
[Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
|
418 |
+
|
419 |
+
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
|
420 |
+
is optimal. To activate batching over long audio files, pass the argument `batch_size`:
|
421 |
+
|
422 |
+
```python
|
423 |
+
import torch
|
424 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
425 |
+
from datasets import load_dataset
|
426 |
+
|
427 |
+
|
428 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
429 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
430 |
+
|
431 |
+
model_id = "openai/whisper-large-v3"
|
432 |
+
|
433 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
434 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
435 |
+
)
|
436 |
+
model.to(device)
|
437 |
+
|
438 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
439 |
+
|
440 |
+
pipe = pipeline(
|
441 |
+
"automatic-speech-recognition",
|
442 |
+
model=model,
|
443 |
+
tokenizer=processor.tokenizer,
|
444 |
+
feature_extractor=processor.feature_extractor,
|
445 |
+
max_new_tokens=128,
|
446 |
+
chunk_length_s=25,
|
447 |
+
batch_size=16,
|
448 |
+
torch_dtype=torch_dtype,
|
449 |
+
device=device,
|
450 |
+
)
|
451 |
+
|
452 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
453 |
+
sample = dataset[0]["audio"]
|
454 |
+
|
455 |
+
result = pipe(sample)
|
456 |
+
print(result["text"])
|
457 |
+
```
|
458 |
+
|
459 |
+
### Additional Speed & Memory Improvements
|
460 |
+
|
461 |
+
You can apply additional speed and memory improvements to Distil-Whisper to further reduce the inference speed and VRAM
|
462 |
+
requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
|
463 |
+
more efficient flash attention version.
|
464 |
+
|
465 |
+
#### Flash Attention 2
|
466 |
+
|
467 |
+
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
|
468 |
+
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
|
469 |
|
470 |
```
|
471 |
pip install flash-attn --no-build-isolation
|
472 |
```
|
473 |
|
474 |
+
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
475 |
|
476 |
```diff
|
477 |
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
478 |
+
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="flash_attention_2")
|
479 |
```
|
480 |
|
481 |
+
#### Torch Scale-Product-Attention (SDPA)
|
482 |
|
483 |
+
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
|
484 |
+
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
|
485 |
+
whether you have a compatible PyTorch version, run the following Python code snippet:
|
486 |
|
487 |
+
```python
|
488 |
+
from transformers.utils import is_torch_sdpa_available
|
489 |
+
|
490 |
+
print(is_torch_sdpa_available())
|
491 |
```
|
|
|
|
|
492 |
|
493 |
+
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
|
494 |
+
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
|
495 |
+
|
496 |
+
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
|
497 |
+
`attn_implementation="sdpa"` as follows:
|
498 |
|
499 |
```diff
|
500 |
+
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
501 |
+
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
502 |
```
|
503 |
|
504 |
+
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
|
505 |
+
|
506 |
+
#### Torch compile
|
507 |
+
|
508 |
+
Coming soon...
|
509 |
+
|
510 |
+
#### 4-bit and 8-bit Inference
|
511 |
+
|
512 |
+
Coming soon...
|
513 |
+
|
514 |
## Fine-Tuning
|
515 |
|
516 |
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
|