onlysainaa commited on
Commit
27ff03a
1 Parent(s): 7213ed9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -9
README.md CHANGED
@@ -27,26 +27,33 @@ This is the model card of a 🤗 transformers model that has been pushed on the
27
  - **License:** [More Information Needed]
28
  - **Finetuned from model [google-t5-small]:** [More Information Needed]
29
 
30
- # Check if CUDA (GPU) is available
 
 
 
 
 
 
 
31
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
 
33
- # Move the model to the same device (GPU or CPU)
34
  model.to(device)
35
 
36
- # Prepare text input
37
- input_text = "сайн уу" # Mongolian greeting
38
 
39
- # Tokenize the input text
40
  inputs = tokenizer(input_text, return_tensors="pt")
41
 
42
- # Move the input tensors to the same device as the model
43
  inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}
44
 
45
- # Generate translation
46
  outputs = model.generate(**inputs)
47
 
48
- # Decode the output to human-readable text
49
  translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
50
 
51
- # Print the translated text
52
  print(f"Translated Text: {translated_text}")
 
27
  - **License:** [More Information Needed]
28
  - **Finetuned from model [google-t5-small]:** [More Information Needed]
29
 
30
+
31
+ - ** Load model directly
32
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
33
+
34
+ tokenizer = AutoTokenizer.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")
35
+ model = AutoModelForSeq2SeqLM.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")
36
+
37
+ - ** Check if CUDA (GPU) is available
38
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
39
 
40
+ - ** Move the model to the same device (GPU or CPU)
41
  model.to(device)
42
 
43
+ - ** Prepare text input
44
+ input_text = "сайн уу" - ** Mongolian greeting
45
 
46
+ - ** Tokenize the input text
47
  inputs = tokenizer(input_text, return_tensors="pt")
48
 
49
+ - ** Move the input tensors to the same device as the model
50
  inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}
51
 
52
+ - ** Generate translation
53
  outputs = model.generate(**inputs)
54
 
55
+ - ** Decode the output to human-readable text
56
  translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
57
 
58
+ - ** Print the translated text
59
  print(f"Translated Text: {translated_text}")