init
Browse files- README.md +37 -0
- SMTN_test-lunar.zip +3 -0
- SMTN_test-lunar/_stable_baselines3_version +1 -0
- SMTN_test-lunar/data +95 -0
- SMTN_test-lunar/policy.optimizer.pth +3 -0
- SMTN_test-lunar/policy.pth +3 -0
- SMTN_test-lunar/pytorch_variables.pth +3 -0
- SMTN_test-lunar/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 242.84 +/- 19.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
SMTN_test-lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bcac8c5b9f4a51c43256a21d26b4d517a9c061e4ac07ad0d02c2d1b3a050a0f
|
3 |
+
size 147416
|
SMTN_test-lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
SMTN_test-lunar/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f65af132790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65af132820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65af1328b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65af132940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f65af1329d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f65af132a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65af132af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65af132b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f65af132c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65af132ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65af132d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65af132dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f65af1ac870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675210783055600289,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jsz2PEnC6Jt74uODIHLWAVBw7V9sYOAAAgD8AAIA/AEiyPVxHcLpCOsg6BP+pt+P4oTu5abC5AACAPwAAgD8z9nM9KeBjujrtiTtVIq81MMu+umoForoAAIA/AACAPzNUvbz2nEu6D0gruq+WNLV79D87BBJKOQAAgD8AAIA/mpdRvAonULlaX7E6GpjANdMsqzvmHti5AACAPwAAgD8AjOM7XKAMPv2Maj2ef32+Ejz8Ol9ThL0AAAAAAAAAAM1x6byF08K5uz5hux3Pq7YLhDy7TVWFOgAAgD8AAIA/Wg2tvYCTpj4jOGM+cMJFvvpEjj1htoG9AAAAAAAAAAAA40a9rlWvup4E+rl89G+2aDhMOY2q1zUAAIA/AACAP0Bxgj2PjnK6Qo+IusNDhbbR+dq6/qWeOQAAgD8AAIA/ZtYTu6/6lz4BZTs97Uxmvtk8pDywFjq8AAAAAAAAAAB9tpw+K2WFP+uebj5Xh76+piW7PnVIM70AAAAAAAAAAICHHD24tua5nprHugLBk7XbQMA6HuPsOQAAgD8AAIA/zTdTPY+OfrrtRe07+64iOPOpVbus6Ra4AACAPwAAgD8Asz894cijupmqQrqLvDy1yvQHut32XzkAAIA/AACAP2YOqjsUwJi69Yiau3pqAbdHNZ66x5uyOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnlYqLWGZ0CUhpRSlIwBbJRN6AOMAXSUR0CW1esLv1DjdX2UKGgGaAloD0MIcO1EScg2Z0CUhpRSlGgVTegDaBZHQJbXyWpqASZ1fZQoaAZoCWgPQwjURJ+PsmliQJSGlFKUaBVN6ANoFkdAlt490A93bHV9lChoBmgJaA9DCIxkj1Azs2VAlIaUUpRoFU3oA2gWR0CW4CZamoBJdX2UKGgGaAloD0MI9zk+WhywZ0CUhpRSlGgVTegDaBZHQJbnKuX/o7p1fZQoaAZoCWgPQwj5MHvZ9j5gQJSGlFKUaBVN6ANoFkdAlu3Yht+CsnV9lChoBmgJaA9DCP2+f/NifGRAlIaUUpRoFU3oA2gWR0CW7gylenhsdX2UKGgGaAloD0MIi/uPTIe9ZkCUhpRSlGgVTegDaBZHQJb1D2/SH/N1fZQoaAZoCWgPQwjE7juGx1heQJSGlFKUaBVN6ANoFkdAlvf1RLsa9HV9lChoBmgJaA9DCHNMFvcfDGZAlIaUUpRoFU3oA2gWR0CW/qb1yvLYdX2UKGgGaAloD0MIk+LjEzIaY0CUhpRSlGgVTegDaBZHQJca/ldTo+x1fZQoaAZoCWgPQwiXytsRTkhdQJSGlFKUaBVN6ANoFkdAlx3W7aqS5nV9lChoBmgJaA9DCHEC02ndYWJAlIaUUpRoFU3oA2gWR0CXHf0J4SpSdX2UKGgGaAloD0MIVyWRfRCRYUCUhpRSlGgVTegDaBZHQJcgIdeY2Kl1fZQoaAZoCWgPQwhJopdRLPBjQJSGlFKUaBVN6ANoFkdAlyRLyDqW1XV9lChoBmgJaA9DCH9Ma9PYGENAlIaUUpRoFUveaBZHQJcowUKzAvd1fZQoaAZoCWgPQwgixJWzdxFiQJSGlFKUaBVN6ANoFkdAlymYrrgO0HV9lChoBmgJaA9DCLjKEwi7aGBAlIaUUpRoFU3oA2gWR0CXK6n6VMVUdX2UKGgGaAloD0MIiCtn74yOPECUhpRSlGgVS/NoFkdAlyxf8ZUDMnV9lChoBmgJaA9DCFKBk21gM2JAlIaUUpRoFU3oA2gWR0CXLTwob4rSdX2UKGgGaAloD0MIl/+QfvuGMkCUhpRSlGgVTSUBaBZHQJcwuKEWZZ11fZQoaAZoCWgPQwhVTntKzgxiQJSGlFKUaBVN6ANoFkdAlzJnwob4rXV9lChoBmgJaA9DCFrW/WMhqGBAlIaUUpRoFU3oA2gWR0CXM9mkFfRedX2UKGgGaAloD0MIgoyACkcoT0CUhpRSlGgVS9loFkdAlzcG4iHIqHV9lChoBmgJaA9DCKLUXkRbA2JAlIaUUpRoFU3oA2gWR0CXObOPeYUndX2UKGgGaAloD0MIti41Qj8FYECUhpRSlGgVTegDaBZHQJc/vko4MnZ1fZQoaAZoCWgPQwikxRnDnK1jQJSGlFKUaBVN6ANoFkdAlz/toN/e+HV9lChoBmgJaA9DCKMgeHx7G0dAlIaUUpRoFU0cAWgWR0CXRTthNM4+dX2UKGgGaAloD0MI1EUKZeErYECUhpRSlGgVTegDaBZHQJdGptO2y9p1fZQoaAZoCWgPQwiTqBd8mmdiQJSGlFKUaBVN6ANoFkdAl0mHTmW+oXV9lChoBmgJaA9DCGvXhLTGfkVAlIaUUpRoFUv1aBZHQJdP31mJ3xF1fZQoaAZoCWgPQwio/dZOlF5iQJSGlFKUaBVN6ANoFkdAl1ABUrCm/HV9lChoBmgJaA9DCCv4bYjxYmBAlIaUUpRoFU3oA2gWR0CXb0Enb7CSdX2UKGgGaAloD0MIfQiqRq8DXUCUhpRSlGgVTegDaBZHQJd3FBF/hEV1fZQoaAZoCWgPQwiEDrqEQ/FjQJSGlFKUaBVN6ANoFkdAl3ymFBY3enV9lChoBmgJaA9DCPEuF/GdaWVAlIaUUpRoFU3oA2gWR0CXfbCngpBpdX2UKGgGaAloD0MIR+nSv6QVYECUhpRSlGgVTegDaBZHQJeBOdXko4N1fZQoaAZoCWgPQwgrbAa4oJhgQJSGlFKUaBVN6ANoFkdAl4JHpfQa73V9lChoBmgJaA9DCKPMBpnkCGFAlIaUUpRoFU3oA2gWR0CXhptG/etTdX2UKGgGaAloD0MI5/up8VKyZkCUhpRSlGgVTegDaBZHQJeIgsd1dPd1fZQoaAZoCWgPQwhOt+wQf55kQJSGlFKUaBVN6ANoFkdAl42r8WKuS3V9lChoBmgJaA9DCO832nFDRWFAlIaUUpRoFU3oA2gWR0CXkJDlHSWrdX2UKGgGaAloD0MI7Sqk/KS9Y0CUhpRSlGgVTegDaBZHQJeWi/qPfbd1fZQoaAZoCWgPQwhd+SzPg6diQJSGlFKUaBVN6ANoFkdAl5ySVKPGQ3V9lChoBmgJaA9DCHnNqzorPWVAlIaUUpRoFU3oA2gWR0CXngzySV4YdX2UKGgGaAloD0MIya1Jt6UvY0CUhpRSlGgVTegDaBZHQJehIvGp++d1fZQoaAZoCWgPQwjIC+nwECREQJSGlFKUaBVL42gWR0CXphukDZDidX2UKGgGaAloD0MIK/uuCP6iYUCUhpRSlGgVTegDaBZHQJeng9r433p1fZQoaAZoCWgPQwjScqCHWpdhQJSGlFKUaBVN6ANoFkdAl6eqqS5iE3V9lChoBmgJaA9DCAn6Cz3iZ2VAlIaUUpRoFU3oA2gWR0CXxr2w3YL9dX2UKGgGaAloD0MI4C77daclZUCUhpRSlGgVTegDaBZHQJfOQrUb1h91fZQoaAZoCWgPQwiyZfm6jKNiQJSGlFKUaBVN6ANoFkdAl9OnVTaTOnV9lChoBmgJaA9DCGYRiq2gdmdAlIaUUpRoFU3oA2gWR0CX1J4Qz1sddX2UKGgGaAloD0MIxFp8CoDJYUCUhpRSlGgVTegDaBZHQJfX4sd1dPd1fZQoaAZoCWgPQwiJ6q2BrZ1hQJSGlFKUaBVN6ANoFkdAl9jhDXvphXV9lChoBmgJaA9DCGSw4lRrNGRAlIaUUpRoFU3oA2gWR0CX3P0oScsldX2UKGgGaAloD0MI+FCiJQ/xZUCUhpRSlGgVTegDaBZHQJfe2om5UcZ1fZQoaAZoCWgPQwiRtYZSe4ZkQJSGlFKUaBVN6ANoFkdAl+Qp7b+LnHV9lChoBmgJaA9DCGMnvAQnIGFAlIaUUpRoFU3oA2gWR0CX5xGFBY3edX2UKGgGaAloD0MIL6LtmLpDNMCUhpRSlGgVS/toFkdAl+7CHARChXV9lChoBmgJaA9DCPJ7m/5sFmJAlIaUUpRoFU3oA2gWR0CX8zeV9nbqdX2UKGgGaAloD0MIOe6UDtb8ZECUhpRSlGgVTegDaBZHQJf0ngxagVZ1fZQoaAZoCWgPQwh+rOC3odplQJSGlFKUaBVN6ANoFkdAl/epHmRvFXV9lChoBmgJaA9DCKjDCrd80lxAlIaUUpRoFU3oA2gWR0CX/M508vEkdX2UKGgGaAloD0MI7kEIyBerZkCUhpRSlGgVTegDaBZHQJf+Lazu4PR1fZQoaAZoCWgPQwjK3lLOF65mQJSGlFKUaBVN6ANoFkdAl/5PYODraHV9lChoBmgJaA9DCNbjvtU6wV1AlIaUUpRoFU3oA2gWR0CYCU1JUYKqdX2UKGgGaAloD0MIsKpefqfnYUCUhpRSlGgVTegDaBZHQJgrX/Mnqml1fZQoaAZoCWgPQwgE4nX9AqdiQJSGlFKUaBVN6ANoFkdAmDGWilBQenV9lChoBmgJaA9DCPTF3osvlGVAlIaUUpRoFU3oA2gWR0CYMsT6zmfXdX2UKGgGaAloD0MI1vz4SwvpY0CUhpRSlGgVTegDaBZHQJg22y0KJEZ1fZQoaAZoCWgPQwgPm8jMBVRlQJSGlFKUaBVN6ANoFkdAmDgPAsTWXnV9lChoBmgJaA9DCLMo7KJoD2dAlIaUUpRoFU3oA2gWR0CYPK6P8yeqdX2UKGgGaAloD0MIkGgCRSzFYkCUhpRSlGgVTegDaBZHQJhFGLm6oVF1fZQoaAZoCWgPQwjmrboO1TZBQJSGlFKUaBVL5mgWR0CYSD00FbFCdX2UKGgGaAloD0MINQcI5mjGYECUhpRSlGgVTegDaBZHQJhIoLncL0B1fZQoaAZoCWgPQwgw9l58UapiQJSGlFKUaBVN6ANoFkdAmFERbKRuCXV9lChoBmgJaA9DCKuzWmCP2WBAlIaUUpRoFU3oA2gWR0CYVYgflp49dX2UKGgGaAloD0MIYyZRL3iUZkCUhpRSlGgVTegDaBZHQJhXGTs6aLJ1fZQoaAZoCWgPQwhkOnR63kJgQJSGlFKUaBVN6ANoFkdAmFo1iSaEz3V9lChoBmgJaA9DCCgLX1/rqWBAlIaUUpRoFU3oA2gWR0CYX6Zy+6AfdX2UKGgGaAloD0MIV81zRD5GYUCUhpRSlGgVTegDaBZHQJhhGaMJhOR1fZQoaAZoCWgPQwgQPL696yVkQJSGlFKUaBVN6ANoFkdAmGE/6oESunV9lChoBmgJaA9DCJ/Nqs9VbmVAlIaUUpRoFU3oA2gWR0CYbDfs/pt8dX2UKGgGaAloD0MIJ2vUQzSYYUCUhpRSlGgVTegDaBZHQJiIDWjGkvd1fZQoaAZoCWgPQwiBIatbPWhfQJSGlFKUaBVN6ANoFkdAmI29cv/R3XV9lChoBmgJaA9DCKwCtRg8D15AlIaUUpRoFU3oA2gWR0CYjsT4tYjjdX2UKGgGaAloD0MI0v2cgnzpYUCUhpRSlGgVTegDaBZHQJiSRuzhP0t1fZQoaAZoCWgPQwiLTwEwntFlQJSGlFKUaBVN6ANoFkdAmJf7pNbkfnV9lChoBmgJaA9DCImXp3PF/GRAlIaUUpRoFU3oA2gWR0CYoKFQVKwqdX2UKGgGaAloD0MInkKu1DMZY0CUhpRSlGgVTegDaBZHQJij0b5uZTh1fZQoaAZoCWgPQwiXGqGfKRljQJSGlFKUaBVN6ANoFkdAmKQaM3qA0HV9lChoBmgJaA9DCIOnkCv1z1xAlIaUUpRoFU3oA2gWR0CYrMndO6/ZdX2UKGgGaAloD0MIopqSrMOEYECUhpRSlGgVTegDaBZHQJixaI1tO211fZQoaAZoCWgPQwiIuaRqu5NnQJSGlFKUaBVN6ANoFkdAmLLy9M9KVnV9lChoBmgJaA9DCFiP+1ZrvGZAlIaUUpRoFU3oA2gWR0CYtgryDqW1dX2UKGgGaAloD0MIXYqryj71YECUhpRSlGgVTegDaBZHQJi7ac5Ke051fZQoaAZoCWgPQwgCRSxiWJ1jQJSGlFKUaBVN6ANoFkdAmLzF5OafBnV9lChoBmgJaA9DCBQi4BCqqFtAlIaUUpRoFU3oA2gWR0CYvOrXlKbsdX2UKGgGaAloD0MIsiyY+KM9ZECUhpRSlGgVTegDaBZHQJjHhshxHXp1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
SMTN_test-lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ba16bce46463ac9f19bc6a8fd2260798dcc34a434b3099cb1b3dafc436b9476
|
3 |
+
size 87929
|
SMTN_test-lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1f79a468ca24a4c1816d4f476e7cff6c77298311e415614a10a59cbcba33650
|
3 |
+
size 43393
|
SMTN_test-lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
SMTN_test-lunar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65af132790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65af132820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65af1328b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65af132940>", "_build": "<function ActorCriticPolicy._build at 0x7f65af1329d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f65af132a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65af132af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65af132b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f65af132c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65af132ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65af132d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65af132dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f65af1ac870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675210783055600289, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jsz2PEnC6Jt74uODIHLWAVBw7V9sYOAAAgD8AAIA/AEiyPVxHcLpCOsg6BP+pt+P4oTu5abC5AACAPwAAgD8z9nM9KeBjujrtiTtVIq81MMu+umoForoAAIA/AACAPzNUvbz2nEu6D0gruq+WNLV79D87BBJKOQAAgD8AAIA/mpdRvAonULlaX7E6GpjANdMsqzvmHti5AACAPwAAgD8AjOM7XKAMPv2Maj2ef32+Ejz8Ol9ThL0AAAAAAAAAAM1x6byF08K5uz5hux3Pq7YLhDy7TVWFOgAAgD8AAIA/Wg2tvYCTpj4jOGM+cMJFvvpEjj1htoG9AAAAAAAAAAAA40a9rlWvup4E+rl89G+2aDhMOY2q1zUAAIA/AACAP0Bxgj2PjnK6Qo+IusNDhbbR+dq6/qWeOQAAgD8AAIA/ZtYTu6/6lz4BZTs97Uxmvtk8pDywFjq8AAAAAAAAAAB9tpw+K2WFP+uebj5Xh76+piW7PnVIM70AAAAAAAAAAICHHD24tua5nprHugLBk7XbQMA6HuPsOQAAgD8AAIA/zTdTPY+OfrrtRe07+64iOPOpVbus6Ra4AACAPwAAgD8Asz894cijupmqQrqLvDy1yvQHut32XzkAAIA/AACAP2YOqjsUwJi69Yiau3pqAbdHNZ66x5uyOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnlYqLWGZ0CUhpRSlIwBbJRN6AOMAXSUR0CW1esLv1DjdX2UKGgGaAloD0MIcO1EScg2Z0CUhpRSlGgVTegDaBZHQJbXyWpqASZ1fZQoaAZoCWgPQwjURJ+PsmliQJSGlFKUaBVN6ANoFkdAlt490A93bHV9lChoBmgJaA9DCIxkj1Azs2VAlIaUUpRoFU3oA2gWR0CW4CZamoBJdX2UKGgGaAloD0MI9zk+WhywZ0CUhpRSlGgVTegDaBZHQJbnKuX/o7p1fZQoaAZoCWgPQwj5MHvZ9j5gQJSGlFKUaBVN6ANoFkdAlu3Yht+CsnV9lChoBmgJaA9DCP2+f/NifGRAlIaUUpRoFU3oA2gWR0CW7gylenhsdX2UKGgGaAloD0MIi/uPTIe9ZkCUhpRSlGgVTegDaBZHQJb1D2/SH/N1fZQoaAZoCWgPQwjE7juGx1heQJSGlFKUaBVN6ANoFkdAlvf1RLsa9HV9lChoBmgJaA9DCHNMFvcfDGZAlIaUUpRoFU3oA2gWR0CW/qb1yvLYdX2UKGgGaAloD0MIk+LjEzIaY0CUhpRSlGgVTegDaBZHQJca/ldTo+x1fZQoaAZoCWgPQwiXytsRTkhdQJSGlFKUaBVN6ANoFkdAlx3W7aqS5nV9lChoBmgJaA9DCHEC02ndYWJAlIaUUpRoFU3oA2gWR0CXHf0J4SpSdX2UKGgGaAloD0MIVyWRfRCRYUCUhpRSlGgVTegDaBZHQJcgIdeY2Kl1fZQoaAZoCWgPQwhJopdRLPBjQJSGlFKUaBVN6ANoFkdAlyRLyDqW1XV9lChoBmgJaA9DCH9Ma9PYGENAlIaUUpRoFUveaBZHQJcowUKzAvd1fZQoaAZoCWgPQwgixJWzdxFiQJSGlFKUaBVN6ANoFkdAlymYrrgO0HV9lChoBmgJaA9DCLjKEwi7aGBAlIaUUpRoFU3oA2gWR0CXK6n6VMVUdX2UKGgGaAloD0MIiCtn74yOPECUhpRSlGgVS/NoFkdAlyxf8ZUDMnV9lChoBmgJaA9DCFKBk21gM2JAlIaUUpRoFU3oA2gWR0CXLTwob4rSdX2UKGgGaAloD0MIl/+QfvuGMkCUhpRSlGgVTSUBaBZHQJcwuKEWZZ11fZQoaAZoCWgPQwhVTntKzgxiQJSGlFKUaBVN6ANoFkdAlzJnwob4rXV9lChoBmgJaA9DCFrW/WMhqGBAlIaUUpRoFU3oA2gWR0CXM9mkFfRedX2UKGgGaAloD0MIgoyACkcoT0CUhpRSlGgVS9loFkdAlzcG4iHIqHV9lChoBmgJaA9DCKLUXkRbA2JAlIaUUpRoFU3oA2gWR0CXObOPeYUndX2UKGgGaAloD0MIti41Qj8FYECUhpRSlGgVTegDaBZHQJc/vko4MnZ1fZQoaAZoCWgPQwikxRnDnK1jQJSGlFKUaBVN6ANoFkdAlz/toN/e+HV9lChoBmgJaA9DCKMgeHx7G0dAlIaUUpRoFU0cAWgWR0CXRTthNM4+dX2UKGgGaAloD0MI1EUKZeErYECUhpRSlGgVTegDaBZHQJdGptO2y9p1fZQoaAZoCWgPQwiTqBd8mmdiQJSGlFKUaBVN6ANoFkdAl0mHTmW+oXV9lChoBmgJaA9DCGvXhLTGfkVAlIaUUpRoFUv1aBZHQJdP31mJ3xF1fZQoaAZoCWgPQwio/dZOlF5iQJSGlFKUaBVN6ANoFkdAl1ABUrCm/HV9lChoBmgJaA9DCCv4bYjxYmBAlIaUUpRoFU3oA2gWR0CXb0Enb7CSdX2UKGgGaAloD0MIfQiqRq8DXUCUhpRSlGgVTegDaBZHQJd3FBF/hEV1fZQoaAZoCWgPQwiEDrqEQ/FjQJSGlFKUaBVN6ANoFkdAl3ymFBY3enV9lChoBmgJaA9DCPEuF/GdaWVAlIaUUpRoFU3oA2gWR0CXfbCngpBpdX2UKGgGaAloD0MIR+nSv6QVYECUhpRSlGgVTegDaBZHQJeBOdXko4N1fZQoaAZoCWgPQwgrbAa4oJhgQJSGlFKUaBVN6ANoFkdAl4JHpfQa73V9lChoBmgJaA9DCKPMBpnkCGFAlIaUUpRoFU3oA2gWR0CXhptG/etTdX2UKGgGaAloD0MI5/up8VKyZkCUhpRSlGgVTegDaBZHQJeIgsd1dPd1fZQoaAZoCWgPQwhOt+wQf55kQJSGlFKUaBVN6ANoFkdAl42r8WKuS3V9lChoBmgJaA9DCO832nFDRWFAlIaUUpRoFU3oA2gWR0CXkJDlHSWrdX2UKGgGaAloD0MI7Sqk/KS9Y0CUhpRSlGgVTegDaBZHQJeWi/qPfbd1fZQoaAZoCWgPQwhd+SzPg6diQJSGlFKUaBVN6ANoFkdAl5ySVKPGQ3V9lChoBmgJaA9DCHnNqzorPWVAlIaUUpRoFU3oA2gWR0CXngzySV4YdX2UKGgGaAloD0MIya1Jt6UvY0CUhpRSlGgVTegDaBZHQJehIvGp++d1fZQoaAZoCWgPQwjIC+nwECREQJSGlFKUaBVL42gWR0CXphukDZDidX2UKGgGaAloD0MIK/uuCP6iYUCUhpRSlGgVTegDaBZHQJeng9r433p1fZQoaAZoCWgPQwjScqCHWpdhQJSGlFKUaBVN6ANoFkdAl6eqqS5iE3V9lChoBmgJaA9DCAn6Cz3iZ2VAlIaUUpRoFU3oA2gWR0CXxr2w3YL9dX2UKGgGaAloD0MI4C77daclZUCUhpRSlGgVTegDaBZHQJfOQrUb1h91fZQoaAZoCWgPQwiyZfm6jKNiQJSGlFKUaBVN6ANoFkdAl9OnVTaTOnV9lChoBmgJaA9DCGYRiq2gdmdAlIaUUpRoFU3oA2gWR0CX1J4Qz1sddX2UKGgGaAloD0MIxFp8CoDJYUCUhpRSlGgVTegDaBZHQJfX4sd1dPd1fZQoaAZoCWgPQwiJ6q2BrZ1hQJSGlFKUaBVN6ANoFkdAl9jhDXvphXV9lChoBmgJaA9DCGSw4lRrNGRAlIaUUpRoFU3oA2gWR0CX3P0oScsldX2UKGgGaAloD0MI+FCiJQ/xZUCUhpRSlGgVTegDaBZHQJfe2om5UcZ1fZQoaAZoCWgPQwiRtYZSe4ZkQJSGlFKUaBVN6ANoFkdAl+Qp7b+LnHV9lChoBmgJaA9DCGMnvAQnIGFAlIaUUpRoFU3oA2gWR0CX5xGFBY3edX2UKGgGaAloD0MIL6LtmLpDNMCUhpRSlGgVS/toFkdAl+7CHARChXV9lChoBmgJaA9DCPJ7m/5sFmJAlIaUUpRoFU3oA2gWR0CX8zeV9nbqdX2UKGgGaAloD0MIOe6UDtb8ZECUhpRSlGgVTegDaBZHQJf0ngxagVZ1fZQoaAZoCWgPQwh+rOC3odplQJSGlFKUaBVN6ANoFkdAl/epHmRvFXV9lChoBmgJaA9DCKjDCrd80lxAlIaUUpRoFU3oA2gWR0CX/M508vEkdX2UKGgGaAloD0MI7kEIyBerZkCUhpRSlGgVTegDaBZHQJf+Lazu4PR1fZQoaAZoCWgPQwjK3lLOF65mQJSGlFKUaBVN6ANoFkdAl/5PYODraHV9lChoBmgJaA9DCNbjvtU6wV1AlIaUUpRoFU3oA2gWR0CYCU1JUYKqdX2UKGgGaAloD0MIsKpefqfnYUCUhpRSlGgVTegDaBZHQJgrX/Mnqml1fZQoaAZoCWgPQwgE4nX9AqdiQJSGlFKUaBVN6ANoFkdAmDGWilBQenV9lChoBmgJaA9DCPTF3osvlGVAlIaUUpRoFU3oA2gWR0CYMsT6zmfXdX2UKGgGaAloD0MI1vz4SwvpY0CUhpRSlGgVTegDaBZHQJg22y0KJEZ1fZQoaAZoCWgPQwgPm8jMBVRlQJSGlFKUaBVN6ANoFkdAmDgPAsTWXnV9lChoBmgJaA9DCLMo7KJoD2dAlIaUUpRoFU3oA2gWR0CYPK6P8yeqdX2UKGgGaAloD0MIkGgCRSzFYkCUhpRSlGgVTegDaBZHQJhFGLm6oVF1fZQoaAZoCWgPQwjmrboO1TZBQJSGlFKUaBVL5mgWR0CYSD00FbFCdX2UKGgGaAloD0MINQcI5mjGYECUhpRSlGgVTegDaBZHQJhIoLncL0B1fZQoaAZoCWgPQwgw9l58UapiQJSGlFKUaBVN6ANoFkdAmFERbKRuCXV9lChoBmgJaA9DCKuzWmCP2WBAlIaUUpRoFU3oA2gWR0CYVYgflp49dX2UKGgGaAloD0MIYyZRL3iUZkCUhpRSlGgVTegDaBZHQJhXGTs6aLJ1fZQoaAZoCWgPQwhkOnR63kJgQJSGlFKUaBVN6ANoFkdAmFo1iSaEz3V9lChoBmgJaA9DCCgLX1/rqWBAlIaUUpRoFU3oA2gWR0CYX6Zy+6AfdX2UKGgGaAloD0MIV81zRD5GYUCUhpRSlGgVTegDaBZHQJhhGaMJhOR1fZQoaAZoCWgPQwgQPL696yVkQJSGlFKUaBVN6ANoFkdAmGE/6oESunV9lChoBmgJaA9DCJ/Nqs9VbmVAlIaUUpRoFU3oA2gWR0CYbDfs/pt8dX2UKGgGaAloD0MIJ2vUQzSYYUCUhpRSlGgVTegDaBZHQJiIDWjGkvd1fZQoaAZoCWgPQwiBIatbPWhfQJSGlFKUaBVN6ANoFkdAmI29cv/R3XV9lChoBmgJaA9DCKwCtRg8D15AlIaUUpRoFU3oA2gWR0CYjsT4tYjjdX2UKGgGaAloD0MI0v2cgnzpYUCUhpRSlGgVTegDaBZHQJiSRuzhP0t1fZQoaAZoCWgPQwiLTwEwntFlQJSGlFKUaBVN6ANoFkdAmJf7pNbkfnV9lChoBmgJaA9DCImXp3PF/GRAlIaUUpRoFU3oA2gWR0CYoKFQVKwqdX2UKGgGaAloD0MInkKu1DMZY0CUhpRSlGgVTegDaBZHQJij0b5uZTh1fZQoaAZoCWgPQwiXGqGfKRljQJSGlFKUaBVN6ANoFkdAmKQaM3qA0HV9lChoBmgJaA9DCIOnkCv1z1xAlIaUUpRoFU3oA2gWR0CYrMndO6/ZdX2UKGgGaAloD0MIopqSrMOEYECUhpRSlGgVTegDaBZHQJixaI1tO211fZQoaAZoCWgPQwiIuaRqu5NnQJSGlFKUaBVN6ANoFkdAmLLy9M9KVnV9lChoBmgJaA9DCFiP+1ZrvGZAlIaUUpRoFU3oA2gWR0CYtgryDqW1dX2UKGgGaAloD0MIXYqryj71YECUhpRSlGgVTegDaBZHQJi7ac5Ke051fZQoaAZoCWgPQwgCRSxiWJ1jQJSGlFKUaBVN6ANoFkdAmLzF5OafBnV9lChoBmgJaA9DCBQi4BCqqFtAlIaUUpRoFU3oA2gWR0CYvOrXlKbsdX2UKGgGaAloD0MIsiyY+KM9ZECUhpRSlGgVTegDaBZHQJjHhshxHXp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (248 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.839404794989, "std_reward": 19.19266306461787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T00:45:42.788748"}
|