ongkn commited on
Commit
3380519
1 Parent(s): 5a189e6
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.84 +/- 19.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
SMTN_test-lunar.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bcac8c5b9f4a51c43256a21d26b4d517a9c061e4ac07ad0d02c2d1b3a050a0f
3
+ size 147416
SMTN_test-lunar/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
SMTN_test-lunar/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65af132790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65af132820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65af1328b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65af132940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f65af1329d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f65af132a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65af132af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65af132b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f65af132c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65af132ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65af132d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65af132dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f65af1ac870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675210783055600289,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jsz2PEnC6Jt74uODIHLWAVBw7V9sYOAAAgD8AAIA/AEiyPVxHcLpCOsg6BP+pt+P4oTu5abC5AACAPwAAgD8z9nM9KeBjujrtiTtVIq81MMu+umoForoAAIA/AACAPzNUvbz2nEu6D0gruq+WNLV79D87BBJKOQAAgD8AAIA/mpdRvAonULlaX7E6GpjANdMsqzvmHti5AACAPwAAgD8AjOM7XKAMPv2Maj2ef32+Ejz8Ol9ThL0AAAAAAAAAAM1x6byF08K5uz5hux3Pq7YLhDy7TVWFOgAAgD8AAIA/Wg2tvYCTpj4jOGM+cMJFvvpEjj1htoG9AAAAAAAAAAAA40a9rlWvup4E+rl89G+2aDhMOY2q1zUAAIA/AACAP0Bxgj2PjnK6Qo+IusNDhbbR+dq6/qWeOQAAgD8AAIA/ZtYTu6/6lz4BZTs97Uxmvtk8pDywFjq8AAAAAAAAAAB9tpw+K2WFP+uebj5Xh76+piW7PnVIM70AAAAAAAAAAICHHD24tua5nprHugLBk7XbQMA6HuPsOQAAgD8AAIA/zTdTPY+OfrrtRe07+64iOPOpVbus6Ra4AACAPwAAgD8Asz894cijupmqQrqLvDy1yvQHut32XzkAAIA/AACAP2YOqjsUwJi69Yiau3pqAbdHNZ66x5uyOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnlYqLWGZ0CUhpRSlIwBbJRN6AOMAXSUR0CW1esLv1DjdX2UKGgGaAloD0MIcO1EScg2Z0CUhpRSlGgVTegDaBZHQJbXyWpqASZ1fZQoaAZoCWgPQwjURJ+PsmliQJSGlFKUaBVN6ANoFkdAlt490A93bHV9lChoBmgJaA9DCIxkj1Azs2VAlIaUUpRoFU3oA2gWR0CW4CZamoBJdX2UKGgGaAloD0MI9zk+WhywZ0CUhpRSlGgVTegDaBZHQJbnKuX/o7p1fZQoaAZoCWgPQwj5MHvZ9j5gQJSGlFKUaBVN6ANoFkdAlu3Yht+CsnV9lChoBmgJaA9DCP2+f/NifGRAlIaUUpRoFU3oA2gWR0CW7gylenhsdX2UKGgGaAloD0MIi/uPTIe9ZkCUhpRSlGgVTegDaBZHQJb1D2/SH/N1fZQoaAZoCWgPQwjE7juGx1heQJSGlFKUaBVN6ANoFkdAlvf1RLsa9HV9lChoBmgJaA9DCHNMFvcfDGZAlIaUUpRoFU3oA2gWR0CW/qb1yvLYdX2UKGgGaAloD0MIk+LjEzIaY0CUhpRSlGgVTegDaBZHQJca/ldTo+x1fZQoaAZoCWgPQwiXytsRTkhdQJSGlFKUaBVN6ANoFkdAlx3W7aqS5nV9lChoBmgJaA9DCHEC02ndYWJAlIaUUpRoFU3oA2gWR0CXHf0J4SpSdX2UKGgGaAloD0MIVyWRfRCRYUCUhpRSlGgVTegDaBZHQJcgIdeY2Kl1fZQoaAZoCWgPQwhJopdRLPBjQJSGlFKUaBVN6ANoFkdAlyRLyDqW1XV9lChoBmgJaA9DCH9Ma9PYGENAlIaUUpRoFUveaBZHQJcowUKzAvd1fZQoaAZoCWgPQwgixJWzdxFiQJSGlFKUaBVN6ANoFkdAlymYrrgO0HV9lChoBmgJaA9DCLjKEwi7aGBAlIaUUpRoFU3oA2gWR0CXK6n6VMVUdX2UKGgGaAloD0MIiCtn74yOPECUhpRSlGgVS/NoFkdAlyxf8ZUDMnV9lChoBmgJaA9DCFKBk21gM2JAlIaUUpRoFU3oA2gWR0CXLTwob4rSdX2UKGgGaAloD0MIl/+QfvuGMkCUhpRSlGgVTSUBaBZHQJcwuKEWZZ11fZQoaAZoCWgPQwhVTntKzgxiQJSGlFKUaBVN6ANoFkdAlzJnwob4rXV9lChoBmgJaA9DCFrW/WMhqGBAlIaUUpRoFU3oA2gWR0CXM9mkFfRedX2UKGgGaAloD0MIgoyACkcoT0CUhpRSlGgVS9loFkdAlzcG4iHIqHV9lChoBmgJaA9DCKLUXkRbA2JAlIaUUpRoFU3oA2gWR0CXObOPeYUndX2UKGgGaAloD0MIti41Qj8FYECUhpRSlGgVTegDaBZHQJc/vko4MnZ1fZQoaAZoCWgPQwikxRnDnK1jQJSGlFKUaBVN6ANoFkdAlz/toN/e+HV9lChoBmgJaA9DCKMgeHx7G0dAlIaUUpRoFU0cAWgWR0CXRTthNM4+dX2UKGgGaAloD0MI1EUKZeErYECUhpRSlGgVTegDaBZHQJdGptO2y9p1fZQoaAZoCWgPQwiTqBd8mmdiQJSGlFKUaBVN6ANoFkdAl0mHTmW+oXV9lChoBmgJaA9DCGvXhLTGfkVAlIaUUpRoFUv1aBZHQJdP31mJ3xF1fZQoaAZoCWgPQwio/dZOlF5iQJSGlFKUaBVN6ANoFkdAl1ABUrCm/HV9lChoBmgJaA9DCCv4bYjxYmBAlIaUUpRoFU3oA2gWR0CXb0Enb7CSdX2UKGgGaAloD0MIfQiqRq8DXUCUhpRSlGgVTegDaBZHQJd3FBF/hEV1fZQoaAZoCWgPQwiEDrqEQ/FjQJSGlFKUaBVN6ANoFkdAl3ymFBY3enV9lChoBmgJaA9DCPEuF/GdaWVAlIaUUpRoFU3oA2gWR0CXfbCngpBpdX2UKGgGaAloD0MIR+nSv6QVYECUhpRSlGgVTegDaBZHQJeBOdXko4N1fZQoaAZoCWgPQwgrbAa4oJhgQJSGlFKUaBVN6ANoFkdAl4JHpfQa73V9lChoBmgJaA9DCKPMBpnkCGFAlIaUUpRoFU3oA2gWR0CXhptG/etTdX2UKGgGaAloD0MI5/up8VKyZkCUhpRSlGgVTegDaBZHQJeIgsd1dPd1fZQoaAZoCWgPQwhOt+wQf55kQJSGlFKUaBVN6ANoFkdAl42r8WKuS3V9lChoBmgJaA9DCO832nFDRWFAlIaUUpRoFU3oA2gWR0CXkJDlHSWrdX2UKGgGaAloD0MI7Sqk/KS9Y0CUhpRSlGgVTegDaBZHQJeWi/qPfbd1fZQoaAZoCWgPQwhd+SzPg6diQJSGlFKUaBVN6ANoFkdAl5ySVKPGQ3V9lChoBmgJaA9DCHnNqzorPWVAlIaUUpRoFU3oA2gWR0CXngzySV4YdX2UKGgGaAloD0MIya1Jt6UvY0CUhpRSlGgVTegDaBZHQJehIvGp++d1fZQoaAZoCWgPQwjIC+nwECREQJSGlFKUaBVL42gWR0CXphukDZDidX2UKGgGaAloD0MIK/uuCP6iYUCUhpRSlGgVTegDaBZHQJeng9r433p1fZQoaAZoCWgPQwjScqCHWpdhQJSGlFKUaBVN6ANoFkdAl6eqqS5iE3V9lChoBmgJaA9DCAn6Cz3iZ2VAlIaUUpRoFU3oA2gWR0CXxr2w3YL9dX2UKGgGaAloD0MI4C77daclZUCUhpRSlGgVTegDaBZHQJfOQrUb1h91fZQoaAZoCWgPQwiyZfm6jKNiQJSGlFKUaBVN6ANoFkdAl9OnVTaTOnV9lChoBmgJaA9DCGYRiq2gdmdAlIaUUpRoFU3oA2gWR0CX1J4Qz1sddX2UKGgGaAloD0MIxFp8CoDJYUCUhpRSlGgVTegDaBZHQJfX4sd1dPd1fZQoaAZoCWgPQwiJ6q2BrZ1hQJSGlFKUaBVN6ANoFkdAl9jhDXvphXV9lChoBmgJaA9DCGSw4lRrNGRAlIaUUpRoFU3oA2gWR0CX3P0oScsldX2UKGgGaAloD0MI+FCiJQ/xZUCUhpRSlGgVTegDaBZHQJfe2om5UcZ1fZQoaAZoCWgPQwiRtYZSe4ZkQJSGlFKUaBVN6ANoFkdAl+Qp7b+LnHV9lChoBmgJaA9DCGMnvAQnIGFAlIaUUpRoFU3oA2gWR0CX5xGFBY3edX2UKGgGaAloD0MIL6LtmLpDNMCUhpRSlGgVS/toFkdAl+7CHARChXV9lChoBmgJaA9DCPJ7m/5sFmJAlIaUUpRoFU3oA2gWR0CX8zeV9nbqdX2UKGgGaAloD0MIOe6UDtb8ZECUhpRSlGgVTegDaBZHQJf0ngxagVZ1fZQoaAZoCWgPQwh+rOC3odplQJSGlFKUaBVN6ANoFkdAl/epHmRvFXV9lChoBmgJaA9DCKjDCrd80lxAlIaUUpRoFU3oA2gWR0CX/M508vEkdX2UKGgGaAloD0MI7kEIyBerZkCUhpRSlGgVTegDaBZHQJf+Lazu4PR1fZQoaAZoCWgPQwjK3lLOF65mQJSGlFKUaBVN6ANoFkdAl/5PYODraHV9lChoBmgJaA9DCNbjvtU6wV1AlIaUUpRoFU3oA2gWR0CYCU1JUYKqdX2UKGgGaAloD0MIsKpefqfnYUCUhpRSlGgVTegDaBZHQJgrX/Mnqml1fZQoaAZoCWgPQwgE4nX9AqdiQJSGlFKUaBVN6ANoFkdAmDGWilBQenV9lChoBmgJaA9DCPTF3osvlGVAlIaUUpRoFU3oA2gWR0CYMsT6zmfXdX2UKGgGaAloD0MI1vz4SwvpY0CUhpRSlGgVTegDaBZHQJg22y0KJEZ1fZQoaAZoCWgPQwgPm8jMBVRlQJSGlFKUaBVN6ANoFkdAmDgPAsTWXnV9lChoBmgJaA9DCLMo7KJoD2dAlIaUUpRoFU3oA2gWR0CYPK6P8yeqdX2UKGgGaAloD0MIkGgCRSzFYkCUhpRSlGgVTegDaBZHQJhFGLm6oVF1fZQoaAZoCWgPQwjmrboO1TZBQJSGlFKUaBVL5mgWR0CYSD00FbFCdX2UKGgGaAloD0MINQcI5mjGYECUhpRSlGgVTegDaBZHQJhIoLncL0B1fZQoaAZoCWgPQwgw9l58UapiQJSGlFKUaBVN6ANoFkdAmFERbKRuCXV9lChoBmgJaA9DCKuzWmCP2WBAlIaUUpRoFU3oA2gWR0CYVYgflp49dX2UKGgGaAloD0MIYyZRL3iUZkCUhpRSlGgVTegDaBZHQJhXGTs6aLJ1fZQoaAZoCWgPQwhkOnR63kJgQJSGlFKUaBVN6ANoFkdAmFo1iSaEz3V9lChoBmgJaA9DCCgLX1/rqWBAlIaUUpRoFU3oA2gWR0CYX6Zy+6AfdX2UKGgGaAloD0MIV81zRD5GYUCUhpRSlGgVTegDaBZHQJhhGaMJhOR1fZQoaAZoCWgPQwgQPL696yVkQJSGlFKUaBVN6ANoFkdAmGE/6oESunV9lChoBmgJaA9DCJ/Nqs9VbmVAlIaUUpRoFU3oA2gWR0CYbDfs/pt8dX2UKGgGaAloD0MIJ2vUQzSYYUCUhpRSlGgVTegDaBZHQJiIDWjGkvd1fZQoaAZoCWgPQwiBIatbPWhfQJSGlFKUaBVN6ANoFkdAmI29cv/R3XV9lChoBmgJaA9DCKwCtRg8D15AlIaUUpRoFU3oA2gWR0CYjsT4tYjjdX2UKGgGaAloD0MI0v2cgnzpYUCUhpRSlGgVTegDaBZHQJiSRuzhP0t1fZQoaAZoCWgPQwiLTwEwntFlQJSGlFKUaBVN6ANoFkdAmJf7pNbkfnV9lChoBmgJaA9DCImXp3PF/GRAlIaUUpRoFU3oA2gWR0CYoKFQVKwqdX2UKGgGaAloD0MInkKu1DMZY0CUhpRSlGgVTegDaBZHQJij0b5uZTh1fZQoaAZoCWgPQwiXGqGfKRljQJSGlFKUaBVN6ANoFkdAmKQaM3qA0HV9lChoBmgJaA9DCIOnkCv1z1xAlIaUUpRoFU3oA2gWR0CYrMndO6/ZdX2UKGgGaAloD0MIopqSrMOEYECUhpRSlGgVTegDaBZHQJixaI1tO211fZQoaAZoCWgPQwiIuaRqu5NnQJSGlFKUaBVN6ANoFkdAmLLy9M9KVnV9lChoBmgJaA9DCFiP+1ZrvGZAlIaUUpRoFU3oA2gWR0CYtgryDqW1dX2UKGgGaAloD0MIXYqryj71YECUhpRSlGgVTegDaBZHQJi7ac5Ke051fZQoaAZoCWgPQwgCRSxiWJ1jQJSGlFKUaBVN6ANoFkdAmLzF5OafBnV9lChoBmgJaA9DCBQi4BCqqFtAlIaUUpRoFU3oA2gWR0CYvOrXlKbsdX2UKGgGaAloD0MIsiyY+KM9ZECUhpRSlGgVTegDaBZHQJjHhshxHXp1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
SMTN_test-lunar/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ba16bce46463ac9f19bc6a8fd2260798dcc34a434b3099cb1b3dafc436b9476
3
+ size 87929
SMTN_test-lunar/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1f79a468ca24a4c1816d4f476e7cff6c77298311e415614a10a59cbcba33650
3
+ size 43393
SMTN_test-lunar/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
SMTN_test-lunar/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65af132790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65af132820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65af1328b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65af132940>", "_build": "<function ActorCriticPolicy._build at 0x7f65af1329d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f65af132a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65af132af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65af132b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f65af132c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65af132ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65af132d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65af132dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f65af1ac870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675210783055600289, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jsz2PEnC6Jt74uODIHLWAVBw7V9sYOAAAgD8AAIA/AEiyPVxHcLpCOsg6BP+pt+P4oTu5abC5AACAPwAAgD8z9nM9KeBjujrtiTtVIq81MMu+umoForoAAIA/AACAPzNUvbz2nEu6D0gruq+WNLV79D87BBJKOQAAgD8AAIA/mpdRvAonULlaX7E6GpjANdMsqzvmHti5AACAPwAAgD8AjOM7XKAMPv2Maj2ef32+Ejz8Ol9ThL0AAAAAAAAAAM1x6byF08K5uz5hux3Pq7YLhDy7TVWFOgAAgD8AAIA/Wg2tvYCTpj4jOGM+cMJFvvpEjj1htoG9AAAAAAAAAAAA40a9rlWvup4E+rl89G+2aDhMOY2q1zUAAIA/AACAP0Bxgj2PjnK6Qo+IusNDhbbR+dq6/qWeOQAAgD8AAIA/ZtYTu6/6lz4BZTs97Uxmvtk8pDywFjq8AAAAAAAAAAB9tpw+K2WFP+uebj5Xh76+piW7PnVIM70AAAAAAAAAAICHHD24tua5nprHugLBk7XbQMA6HuPsOQAAgD8AAIA/zTdTPY+OfrrtRe07+64iOPOpVbus6Ra4AACAPwAAgD8Asz894cijupmqQrqLvDy1yvQHut32XzkAAIA/AACAP2YOqjsUwJi69Yiau3pqAbdHNZ66x5uyOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPnlYqLWGZ0CUhpRSlIwBbJRN6AOMAXSUR0CW1esLv1DjdX2UKGgGaAloD0MIcO1EScg2Z0CUhpRSlGgVTegDaBZHQJbXyWpqASZ1fZQoaAZoCWgPQwjURJ+PsmliQJSGlFKUaBVN6ANoFkdAlt490A93bHV9lChoBmgJaA9DCIxkj1Azs2VAlIaUUpRoFU3oA2gWR0CW4CZamoBJdX2UKGgGaAloD0MI9zk+WhywZ0CUhpRSlGgVTegDaBZHQJbnKuX/o7p1fZQoaAZoCWgPQwj5MHvZ9j5gQJSGlFKUaBVN6ANoFkdAlu3Yht+CsnV9lChoBmgJaA9DCP2+f/NifGRAlIaUUpRoFU3oA2gWR0CW7gylenhsdX2UKGgGaAloD0MIi/uPTIe9ZkCUhpRSlGgVTegDaBZHQJb1D2/SH/N1fZQoaAZoCWgPQwjE7juGx1heQJSGlFKUaBVN6ANoFkdAlvf1RLsa9HV9lChoBmgJaA9DCHNMFvcfDGZAlIaUUpRoFU3oA2gWR0CW/qb1yvLYdX2UKGgGaAloD0MIk+LjEzIaY0CUhpRSlGgVTegDaBZHQJca/ldTo+x1fZQoaAZoCWgPQwiXytsRTkhdQJSGlFKUaBVN6ANoFkdAlx3W7aqS5nV9lChoBmgJaA9DCHEC02ndYWJAlIaUUpRoFU3oA2gWR0CXHf0J4SpSdX2UKGgGaAloD0MIVyWRfRCRYUCUhpRSlGgVTegDaBZHQJcgIdeY2Kl1fZQoaAZoCWgPQwhJopdRLPBjQJSGlFKUaBVN6ANoFkdAlyRLyDqW1XV9lChoBmgJaA9DCH9Ma9PYGENAlIaUUpRoFUveaBZHQJcowUKzAvd1fZQoaAZoCWgPQwgixJWzdxFiQJSGlFKUaBVN6ANoFkdAlymYrrgO0HV9lChoBmgJaA9DCLjKEwi7aGBAlIaUUpRoFU3oA2gWR0CXK6n6VMVUdX2UKGgGaAloD0MIiCtn74yOPECUhpRSlGgVS/NoFkdAlyxf8ZUDMnV9lChoBmgJaA9DCFKBk21gM2JAlIaUUpRoFU3oA2gWR0CXLTwob4rSdX2UKGgGaAloD0MIl/+QfvuGMkCUhpRSlGgVTSUBaBZHQJcwuKEWZZ11fZQoaAZoCWgPQwhVTntKzgxiQJSGlFKUaBVN6ANoFkdAlzJnwob4rXV9lChoBmgJaA9DCFrW/WMhqGBAlIaUUpRoFU3oA2gWR0CXM9mkFfRedX2UKGgGaAloD0MIgoyACkcoT0CUhpRSlGgVS9loFkdAlzcG4iHIqHV9lChoBmgJaA9DCKLUXkRbA2JAlIaUUpRoFU3oA2gWR0CXObOPeYUndX2UKGgGaAloD0MIti41Qj8FYECUhpRSlGgVTegDaBZHQJc/vko4MnZ1fZQoaAZoCWgPQwikxRnDnK1jQJSGlFKUaBVN6ANoFkdAlz/toN/e+HV9lChoBmgJaA9DCKMgeHx7G0dAlIaUUpRoFU0cAWgWR0CXRTthNM4+dX2UKGgGaAloD0MI1EUKZeErYECUhpRSlGgVTegDaBZHQJdGptO2y9p1fZQoaAZoCWgPQwiTqBd8mmdiQJSGlFKUaBVN6ANoFkdAl0mHTmW+oXV9lChoBmgJaA9DCGvXhLTGfkVAlIaUUpRoFUv1aBZHQJdP31mJ3xF1fZQoaAZoCWgPQwio/dZOlF5iQJSGlFKUaBVN6ANoFkdAl1ABUrCm/HV9lChoBmgJaA9DCCv4bYjxYmBAlIaUUpRoFU3oA2gWR0CXb0Enb7CSdX2UKGgGaAloD0MIfQiqRq8DXUCUhpRSlGgVTegDaBZHQJd3FBF/hEV1fZQoaAZoCWgPQwiEDrqEQ/FjQJSGlFKUaBVN6ANoFkdAl3ymFBY3enV9lChoBmgJaA9DCPEuF/GdaWVAlIaUUpRoFU3oA2gWR0CXfbCngpBpdX2UKGgGaAloD0MIR+nSv6QVYECUhpRSlGgVTegDaBZHQJeBOdXko4N1fZQoaAZoCWgPQwgrbAa4oJhgQJSGlFKUaBVN6ANoFkdAl4JHpfQa73V9lChoBmgJaA9DCKPMBpnkCGFAlIaUUpRoFU3oA2gWR0CXhptG/etTdX2UKGgGaAloD0MI5/up8VKyZkCUhpRSlGgVTegDaBZHQJeIgsd1dPd1fZQoaAZoCWgPQwhOt+wQf55kQJSGlFKUaBVN6ANoFkdAl42r8WKuS3V9lChoBmgJaA9DCO832nFDRWFAlIaUUpRoFU3oA2gWR0CXkJDlHSWrdX2UKGgGaAloD0MI7Sqk/KS9Y0CUhpRSlGgVTegDaBZHQJeWi/qPfbd1fZQoaAZoCWgPQwhd+SzPg6diQJSGlFKUaBVN6ANoFkdAl5ySVKPGQ3V9lChoBmgJaA9DCHnNqzorPWVAlIaUUpRoFU3oA2gWR0CXngzySV4YdX2UKGgGaAloD0MIya1Jt6UvY0CUhpRSlGgVTegDaBZHQJehIvGp++d1fZQoaAZoCWgPQwjIC+nwECREQJSGlFKUaBVL42gWR0CXphukDZDidX2UKGgGaAloD0MIK/uuCP6iYUCUhpRSlGgVTegDaBZHQJeng9r433p1fZQoaAZoCWgPQwjScqCHWpdhQJSGlFKUaBVN6ANoFkdAl6eqqS5iE3V9lChoBmgJaA9DCAn6Cz3iZ2VAlIaUUpRoFU3oA2gWR0CXxr2w3YL9dX2UKGgGaAloD0MI4C77daclZUCUhpRSlGgVTegDaBZHQJfOQrUb1h91fZQoaAZoCWgPQwiyZfm6jKNiQJSGlFKUaBVN6ANoFkdAl9OnVTaTOnV9lChoBmgJaA9DCGYRiq2gdmdAlIaUUpRoFU3oA2gWR0CX1J4Qz1sddX2UKGgGaAloD0MIxFp8CoDJYUCUhpRSlGgVTegDaBZHQJfX4sd1dPd1fZQoaAZoCWgPQwiJ6q2BrZ1hQJSGlFKUaBVN6ANoFkdAl9jhDXvphXV9lChoBmgJaA9DCGSw4lRrNGRAlIaUUpRoFU3oA2gWR0CX3P0oScsldX2UKGgGaAloD0MI+FCiJQ/xZUCUhpRSlGgVTegDaBZHQJfe2om5UcZ1fZQoaAZoCWgPQwiRtYZSe4ZkQJSGlFKUaBVN6ANoFkdAl+Qp7b+LnHV9lChoBmgJaA9DCGMnvAQnIGFAlIaUUpRoFU3oA2gWR0CX5xGFBY3edX2UKGgGaAloD0MIL6LtmLpDNMCUhpRSlGgVS/toFkdAl+7CHARChXV9lChoBmgJaA9DCPJ7m/5sFmJAlIaUUpRoFU3oA2gWR0CX8zeV9nbqdX2UKGgGaAloD0MIOe6UDtb8ZECUhpRSlGgVTegDaBZHQJf0ngxagVZ1fZQoaAZoCWgPQwh+rOC3odplQJSGlFKUaBVN6ANoFkdAl/epHmRvFXV9lChoBmgJaA9DCKjDCrd80lxAlIaUUpRoFU3oA2gWR0CX/M508vEkdX2UKGgGaAloD0MI7kEIyBerZkCUhpRSlGgVTegDaBZHQJf+Lazu4PR1fZQoaAZoCWgPQwjK3lLOF65mQJSGlFKUaBVN6ANoFkdAl/5PYODraHV9lChoBmgJaA9DCNbjvtU6wV1AlIaUUpRoFU3oA2gWR0CYCU1JUYKqdX2UKGgGaAloD0MIsKpefqfnYUCUhpRSlGgVTegDaBZHQJgrX/Mnqml1fZQoaAZoCWgPQwgE4nX9AqdiQJSGlFKUaBVN6ANoFkdAmDGWilBQenV9lChoBmgJaA9DCPTF3osvlGVAlIaUUpRoFU3oA2gWR0CYMsT6zmfXdX2UKGgGaAloD0MI1vz4SwvpY0CUhpRSlGgVTegDaBZHQJg22y0KJEZ1fZQoaAZoCWgPQwgPm8jMBVRlQJSGlFKUaBVN6ANoFkdAmDgPAsTWXnV9lChoBmgJaA9DCLMo7KJoD2dAlIaUUpRoFU3oA2gWR0CYPK6P8yeqdX2UKGgGaAloD0MIkGgCRSzFYkCUhpRSlGgVTegDaBZHQJhFGLm6oVF1fZQoaAZoCWgPQwjmrboO1TZBQJSGlFKUaBVL5mgWR0CYSD00FbFCdX2UKGgGaAloD0MINQcI5mjGYECUhpRSlGgVTegDaBZHQJhIoLncL0B1fZQoaAZoCWgPQwgw9l58UapiQJSGlFKUaBVN6ANoFkdAmFERbKRuCXV9lChoBmgJaA9DCKuzWmCP2WBAlIaUUpRoFU3oA2gWR0CYVYgflp49dX2UKGgGaAloD0MIYyZRL3iUZkCUhpRSlGgVTegDaBZHQJhXGTs6aLJ1fZQoaAZoCWgPQwhkOnR63kJgQJSGlFKUaBVN6ANoFkdAmFo1iSaEz3V9lChoBmgJaA9DCCgLX1/rqWBAlIaUUpRoFU3oA2gWR0CYX6Zy+6AfdX2UKGgGaAloD0MIV81zRD5GYUCUhpRSlGgVTegDaBZHQJhhGaMJhOR1fZQoaAZoCWgPQwgQPL696yVkQJSGlFKUaBVN6ANoFkdAmGE/6oESunV9lChoBmgJaA9DCJ/Nqs9VbmVAlIaUUpRoFU3oA2gWR0CYbDfs/pt8dX2UKGgGaAloD0MIJ2vUQzSYYUCUhpRSlGgVTegDaBZHQJiIDWjGkvd1fZQoaAZoCWgPQwiBIatbPWhfQJSGlFKUaBVN6ANoFkdAmI29cv/R3XV9lChoBmgJaA9DCKwCtRg8D15AlIaUUpRoFU3oA2gWR0CYjsT4tYjjdX2UKGgGaAloD0MI0v2cgnzpYUCUhpRSlGgVTegDaBZHQJiSRuzhP0t1fZQoaAZoCWgPQwiLTwEwntFlQJSGlFKUaBVN6ANoFkdAmJf7pNbkfnV9lChoBmgJaA9DCImXp3PF/GRAlIaUUpRoFU3oA2gWR0CYoKFQVKwqdX2UKGgGaAloD0MInkKu1DMZY0CUhpRSlGgVTegDaBZHQJij0b5uZTh1fZQoaAZoCWgPQwiXGqGfKRljQJSGlFKUaBVN6ANoFkdAmKQaM3qA0HV9lChoBmgJaA9DCIOnkCv1z1xAlIaUUpRoFU3oA2gWR0CYrMndO6/ZdX2UKGgGaAloD0MIopqSrMOEYECUhpRSlGgVTegDaBZHQJixaI1tO211fZQoaAZoCWgPQwiIuaRqu5NnQJSGlFKUaBVN6ANoFkdAmLLy9M9KVnV9lChoBmgJaA9DCFiP+1ZrvGZAlIaUUpRoFU3oA2gWR0CYtgryDqW1dX2UKGgGaAloD0MIXYqryj71YECUhpRSlGgVTegDaBZHQJi7ac5Ke051fZQoaAZoCWgPQwgCRSxiWJ1jQJSGlFKUaBVN6ANoFkdAmLzF5OafBnV9lChoBmgJaA9DCBQi4BCqqFtAlIaUUpRoFU3oA2gWR0CYvOrXlKbsdX2UKGgGaAloD0MIsiyY+KM9ZECUhpRSlGgVTegDaBZHQJjHhshxHXp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (248 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.839404794989, "std_reward": 19.19266306461787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T00:45:42.788748"}