Safetensors
custom_code
omchat-v2.0-13B-single-beta_hf / processing_omchat.py
kyusonglee's picture
Upload 6 files
d542e6b verified
raw
history blame
13.3 kB
from typing import List, Optional, Union
from transformers import PreTrainedTokenizer
from typing import List, Tuple
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
import torch
def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
if "<image_0>" in prompt:
image_token_pattern = re.compile(r"<image_(\d+)>")
prompt_chunks = re.split(r'<image_[0-9]+>',prompt)
# Identify all the image tags
image_tags = image_token_pattern.findall(prompt)
input_ids = []
for i, chunk in enumerate(prompt_chunks):
input_ids.extend(tokenizer(chunk).input_ids)
if i < len(image_tags):
#input_ids.append(-100 * (int(image_tags[i]) + 3))
input_ids.append(-200)
else:
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
# Convert to tensor if required
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
else:
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []
if chat_format == "chatml":
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [151644]
im_end_tokens = [151645]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
if "<image>" in content:
return f"{role}\n{content}", tokenizer.encode(
role
) + nl_tokens + tokenizer_image_token(
content, tokenizer, -200
)
else:
return f"{role}\n{content}", tokenizer.encode(
role
) + nl_tokens + tokenizer.encode(content)
def _tokenize_str2(role, content):
return f"{role}\n{content}", tokenizer.encode(
role,
) + nl_tokens + tokenizer.encode(content)
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response
)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = (
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
)
current_context_size = (
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
elif chat_format == "raw":
raw_text = query
context_tokens = tokenizer.encode(raw_text)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return raw_text, context_tokens
def split_tensor(A, B):
split_tensors = []
start_idx = 0
for i, size in enumerate(B.tolist()):
split_tensor = A[i, :size, :, :, :]
split_tensors.append(split_tensor) # Take the first element from the batch dimension
return split_tensors
class OmChatProcessor(ProcessorMixin):
r"""
Constructs a OmChat processor which wraps a OmChat image processor and a LLaMa tokenizer into a single processor.
[`OmChatProcessor`] offers all the functionalities of [`OmChatImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~OmChatProcessor.__call__`] and [`~OmChatProcessor.decode`] for more information.
Args:
image_processor ([`OmChatImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
system_prompt: str = "You are a helpful assistant.",
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
OmChatImageProcessor's [`~OmChatImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
system_prompt ('str'):
the initial system prompt (i.e., You are a helpful assistant.)
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
#system_prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
if images is not None:
image_inputs = self.image_processor(images, return_tensors=return_tensors)
new_images = []
new_texts = []
img = image_inputs["pixel_values"]
num_patches = image_inputs["num_patches"]
img = split_tensor(img, num_patches)
if len(img) == 1:
n = num_patches.tolist()[0]
inp, context_tokens = make_context(
self.tokenizer,
"<image>\n"+"\n".join(["patch:<image>"]*(n-1)) +"\n"+ text.replace("<image>", ""),
None,
system_prompt,
)
else:
texts = text.split("<image>")
final =texts[0]
for i, n in enumerate(num_patches.tolist()):
final+= "\n<image>\n"+"\n".join(["patch:<image>"]*(n-1))+"\n"
if i+1 < len(texts):
final += texts[i+1]
inp, context_tokens = make_context(self.tokenizer, final, None, system_prompt)
text_inputs = {"input_ids": torch.tensor([context_tokens])}
image_inputs = {"images":torch.cat(img, dim=0)}
return BatchFeature(data={**text_inputs, **image_inputs})
else:
image_inputs = {"images":None}
inp, context_tokens = make_context(
self.tokenizer,
text.replace("<image>", "").strip(),
None,
"You are a helpful assistant.",
)
text_inputs = {"input_ids": torch.tensor([context_tokens])}
return BatchFeature(data={**text_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))