|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from .configuration_omchat import OmChatConfig |
|
|
|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM |
|
from transformers.utils import logging |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "OmChatConfig" |
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from timm.models.layers import DropPath |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import (BaseModelOutput, |
|
BaseModelOutputWithPooling) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from .configuration_omchat import InternVisionConfig |
|
|
|
try: |
|
from .flash_attention import FlashAttention |
|
has_flash_attn = True |
|
except: |
|
print('FlashAttention is not installed.') |
|
has_flash_attn = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class InternRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
try: |
|
from apex.normalization import FusedRMSNorm |
|
|
|
InternRMSNorm = FusedRMSNorm |
|
|
|
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm') |
|
except ImportError: |
|
|
|
pass |
|
except Exception: |
|
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm') |
|
pass |
|
|
|
|
|
class InternVisionEmbeddings(nn.Module): |
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter( |
|
torch.randn(1, 1, self.embed_dim), |
|
) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) |
|
|
|
def _get_pos_embed(self, pos_embed, H, W): |
|
target_dtype = pos_embed.dtype |
|
pos_embed = pos_embed.float().reshape( |
|
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2) |
|
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\ |
|
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype) |
|
return pos_embed |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
target_dtype = self.patch_embedding.weight.dtype |
|
patch_embeds = self.patch_embedding(pixel_values) |
|
batch_size, _, height, width = patch_embeds.shape |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
position_embedding = torch.cat([ |
|
self.position_embedding[:, :1, :], |
|
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width) |
|
], dim=1) |
|
embeddings = embeddings + position_embedding.to(target_dtype) |
|
return embeddings |
|
|
|
|
|
class InternAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.use_flash_attn = config.use_flash_attn and has_flash_attn |
|
if config.use_flash_attn and not has_flash_attn: |
|
print('Warning: Flash Attention is not available, use_flash_attn is set to False.') |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' |
|
f' {self.num_heads}).' |
|
) |
|
|
|
self.scale = self.head_dim ** -0.5 |
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) |
|
self.attn_drop = nn.Dropout(config.attention_dropout) |
|
self.proj_drop = nn.Dropout(config.dropout) |
|
|
|
self.qk_normalization = config.qk_normalization |
|
|
|
if self.qk_normalization: |
|
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
if self.use_flash_attn: |
|
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) |
|
self.proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def _naive_attn(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.qk_normalization: |
|
B_, H_, N_, D_ = q.shape |
|
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) |
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1)) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): |
|
qkv = self.qkv(x) |
|
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) |
|
|
|
if self.qk_normalization: |
|
q, k, v = qkv.unbind(2) |
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) |
|
qkv = torch.stack([q, k, v], dim=2) |
|
|
|
context, _ = self.inner_attn( |
|
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False |
|
) |
|
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)')) |
|
outs = self.proj_drop(outs) |
|
return outs |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states) |
|
return x |
|
|
|
|
|
class InternMLP(nn.Module): |
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.act = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class InternVisionEncoderLayer(nn.Module): |
|
def __init__(self, config: InternVisionConfig, drop_path_rate: float): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
|
|
self.attn = InternAttention(config) |
|
self.mlp = InternMLP(config) |
|
self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) |
|
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) |
|
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
""" |
|
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1) |
|
|
|
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2) |
|
|
|
return hidden_states |
|
|
|
|
|
class InternVisionEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`InternEncoderLayer`]. |
|
|
|
Args: |
|
config (`InternConfig`): |
|
The corresponding vision configuration for the `InternEncoder`. |
|
""" |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] |
|
self.layers = nn.ModuleList([ |
|
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
hidden_states = inputs_embeds |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
encoder_layer, |
|
hidden_states) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
) |
|
hidden_states = layer_outputs |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states |
|
) |
|
|
|
|
|
class InternVisionModel(PreTrainedModel): |
|
main_input_name = 'pixel_values' |
|
config_class = InternVisionConfig |
|
_no_split_modules=["InternVisionEncoderLayer"] |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = InternVisionEmbeddings(config) |
|
self.encoder = InternVisionEncoder(config) |
|
|
|
def resize_pos_embeddings(self, old_size, new_size, patch_size): |
|
pos_emb = self.embeddings.position_embedding |
|
_, num_positions, embed_dim = pos_emb.shape |
|
cls_emb = pos_emb[:, :1, :] |
|
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) |
|
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False) |
|
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) |
|
pos_emb = torch.cat([cls_emb, pos_emb], dim=1) |
|
self.embeddings.position_embedding = nn.Parameter(pos_emb) |
|
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size)) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_embeds: Optional[torch.FloatTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None and pixel_embeds is None: |
|
raise ValueError('You have to specify pixel_values or pixel_embeds') |
|
|
|
if pixel_embeds is not None: |
|
hidden_states = pixel_embeds |
|
else: |
|
if len(pixel_values.shape) == 4: |
|
hidden_states = self.embeddings(pixel_values) |
|
else: |
|
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}') |
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = encoder_outputs.last_hidden_state |
|
pooled_output = last_hidden_state[:, 0, :] |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (`tuple`): |
|
The size of the input image in the format (width, height). |
|
grid_pinpoints (`List`): |
|
A list containing possible resolutions. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
patch_size (`int`): |
|
The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if not isinstance(grid_pinpoints, list): |
|
raise TypeError("grid_pinpoints should be a list of tuples or lists") |
|
|
|
|
|
if not isinstance(image_size, (list, tuple)): |
|
if not isinstance(image_size, (torch.Tensor, np.ndarray)): |
|
raise TypeError( |
|
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor" |
|
) |
|
image_size = image_size.tolist() |
|
|
|
height, width = select_best_resolution(image_size, grid_pinpoints) |
|
return height // patch_size, width // patch_size |
|
|
|
|
|
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int): |
|
""" |
|
Calculate the number of patches after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`): |
|
The size of the input image in the format (height, width). ? |
|
grid_pinpoints (`List`): |
|
A list containing possible resolutions. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
patch_size (`int`): |
|
The size of each image patch. |
|
|
|
Returns: |
|
int: the number of patches |
|
""" |
|
if not isinstance(grid_pinpoints, list): |
|
raise TypeError("grid_pinpoints should be a list of tuples or lists") |
|
|
|
|
|
if not isinstance(image_size, (list, tuple)): |
|
if not isinstance(image_size, (torch.Tensor, np.ndarray)): |
|
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}") |
|
image_size = image_size.tolist() |
|
|
|
best_resolution = select_best_resolution(image_size, grid_pinpoints) |
|
height, width = best_resolution |
|
num_patches = 0 |
|
|
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
num_patches += 1 |
|
|
|
num_patches += 1 |
|
return num_patches |
|
|
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): |
|
The image tensor, assumed to be of shape (num_channels, height, width). |
|
original_size (`tuple`): |
|
The original size of the image (height, width). |
|
|
|
Returns: |
|
`torch.Tensor`: The unpadded image tensor. |
|
""" |
|
original_height, original_width = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding : current_height - padding, :] |
|
else: |
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding : current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
|
|
@dataclass |
|
|
|
class OmChatCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for OmChat causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
|
|
class OmChatMultiModalProjector(nn.Module): |
|
def __init__(self, config: OmChatConfig): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.act = nn.GELU() |
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.linear_1(image_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
OMCHAT_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`OmChatConfig`] or [`OmChatVisionConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
OMCHAT_START_DOCSTRING, |
|
) |
|
|
|
class OmChatPreTrainedModel(PreTrainedModel): |
|
config_class = OmChatConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["OmChatVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
OMCHAT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`OmChatImageProcessor.__call__`] for details. [`LlavaProcessor`] uses |
|
[`OmChatImageProcessor`] for processing images. |
|
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): |
|
The sizes of the images in the batch, being (height, width) for each image. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. |
|
If `"full"`, the full vision features are used. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The OmChat model which consists of a vision backbone and a language model.""", |
|
OMCHAT_START_DOCSTRING, |
|
) |
|
class OmChatForConditionalGeneration(OmChatPreTrainedModel): |
|
def __init__(self, config: OmChatConfig): |
|
super().__init__(config) |
|
self.vision_tower = InternVisionModel(InternVisionConfig()) |
|
|
|
self.multi_modal_projector = OmChatMultiModalProjector(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.language_model = Qwen2ForCausalLM._from_config( |
|
config.text_config, attn_implementation=config._attn_implementation |
|
) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self._padding_side = "left" |
|
self.post_init() |
|
|
|
@property |
|
def padding_side(self): |
|
return self._padding_side |
|
|
|
@padding_side.setter |
|
def padding_side(self, padding_side: str): |
|
if padding_side not in ["left", "right"]: |
|
raise ValueError(f"{padding_side} is not `left` or `right`.") |
|
self._padding_side = padding_side |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def get_vision_tower(self): |
|
if isinstance(self.vision_tower, list): |
|
return self.vision_tower[0] |
|
return self.vision_tower |
|
|
|
def get_model(self): |
|
return self.language_model.model |
|
|
|
def encode_images(self, images): |
|
vision_tower = self.get_vision_tower() |
|
image_features = self.vision_tower_forward(images) |
|
return self.multi_modal_projector(image_features.to(torch.float16)) |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[-1] |
|
image_features = image_features[:, 1:] |
|
return image_features |
|
|
|
def vision_tower_forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=torch.float16), output_hidden_states=True) |
|
|
|
image_features = self.feature_select(image_forward_outs) |
|
|
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, images |
|
): |
|
|
|
vision_tower = self.get_vision_tower() |
|
video_tower = self.get_vision_tower() |
|
if (vision_tower is None and video_tower is None) or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and (vision_tower is not None or video_tower is not None) and images is not None and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
image_idx = [idx for idx, img in enumerate(images) if img.ndim == 3] |
|
is_all_image = len(image_idx) == len(images) |
|
video_idx = [idx for idx, vid in enumerate(images) if vid.ndim == 4] |
|
images_minibatch = torch.stack([images[idx] for idx in image_idx]) if len(image_idx) > 0 else [] |
|
videos_minibatch = torch.stack([images[idx] for idx in video_idx]) if len(video_idx) > 0 else [] |
|
|
|
tmp_image_features = [None] * (len(image_idx) + len(video_idx)) |
|
if getattr(images_minibatch, 'ndim', 0) == 4: |
|
if vision_tower is not None: |
|
image_features_minibatch = self.encode_images(images_minibatch) |
|
else: |
|
image_features_minibatch = torch.randn(1).to(self.device) |
|
for i, pos in enumerate(image_idx): |
|
tmp_image_features[pos] = image_features_minibatch[i] |
|
if getattr(videos_minibatch, 'ndim', 0) == 5: |
|
video_features_minibatch = self.encode_images(videos_minibatch) |
|
for i, pos in enumerate(video_idx): |
|
tmp_image_features[pos] = video_features_minibatch[i] |
|
new_tmp = [] |
|
for image in tmp_image_features: |
|
if isinstance(image, list): |
|
t = len(image) |
|
for i in range(t): |
|
new_tmp.append(image[i]) |
|
else: |
|
new_tmp.append(image) |
|
image_features = new_tmp |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, -100) |
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == -200).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == -200)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
|
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx].to(self.device) |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), -100, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), -100, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
def _merge_input_ids_with_image_features( |
|
self, |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids=None, |
|
labels=None, |
|
image_token_index=None, |
|
ignore_index=-100, |
|
): |
|
""" |
|
Merge input_ids with with image features into final embeddings |
|
|
|
Args: |
|
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): |
|
All vision vectors of all images in the batch |
|
feature_lens (`torch.LongTensor` of shape `(num_images)`): |
|
The length of visual embeddings of each image as stacked in `image_features` |
|
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): |
|
Token embeddings before merging with visual embeddings |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Input_ids of tokens, possibly filled with image token |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Mask to avoid performing attention on padding token indices. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) |
|
:abels need to be recalculated to support training (if provided) |
|
image_token_index (`int`, *optional*) |
|
Token id used to indicate the special "image" token. Defaults to `config.image_token_index` |
|
ignore_index (`int`, *optional*) |
|
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. |
|
Returns: |
|
final_embedding, final_attention_mask, position_ids, final_labels |
|
|
|
Explanation: |
|
each image has variable length embeddings, with length specified by feature_lens |
|
image_features is concatenation of all visual embed vectors |
|
task: fill each <image> with the correct number of visual embeddings |
|
Example: |
|
X (5 patches), Y (3 patches), Z (8) |
|
X, Y are in the same sequence (in-context learning) |
|
if right padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
o p q r Z s t u v _ _ _ _ _ _ |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ |
|
] |
|
elif left padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
_ _ _ _ _ _ o p q r Z s t u v |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v |
|
] |
|
Edge cases: |
|
* If tokens are same but image token sizes are different, then cannot infer left or right padding |
|
```python |
|
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) |
|
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw) |
|
prompts = [ |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
] |
|
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda") |
|
chart_img has 2634 tokens, while cat_img has 2340 tokens |
|
``` |
|
|
|
input_ids: [ |
|
a b c d X g h |
|
i j Y k l m n |
|
] |
|
where X is 3 tokens while Y is 5, this mean after merge |
|
if left-padding (batched generation) |
|
input_ids should be: [ |
|
_ _ a b c d X X X g h |
|
i j Y Y Y Y Y k l m n |
|
] |
|
elif (right padding) (training) |
|
input_ids should be: [ |
|
a b c d X X X g h _ _ |
|
i j Y Y Y Y Y k l m n |
|
] |
|
""" |
|
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index |
|
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index |
|
|
|
with torch.no_grad(): |
|
|
|
num_images = feature_lens.size(0) |
|
num_image_features, embed_dim = image_features.shape |
|
if feature_lens.sum() != num_image_features: |
|
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") |
|
batch_size = input_ids.shape[0] |
|
_left_padding = torch.any(attention_mask[:, 0] == 0) |
|
_right_padding = torch.any(attention_mask[:, -1] == 0) |
|
|
|
left_padding = True if not self.training else False |
|
if batch_size > 1 and not self.training: |
|
if _left_padding and not _right_padding: |
|
left_padding = True |
|
elif not _left_padding and _right_padding: |
|
left_padding = False |
|
elif not _left_padding and not _right_padding: |
|
|
|
left_padding = self.padding_side == "left" |
|
else: |
|
|
|
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") |
|
|
|
|
|
|
|
special_image_token_mask = input_ids == image_token_index |
|
|
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
|
|
total_num_special_image_tokens = torch.sum(special_image_token_mask) |
|
if total_num_special_image_tokens != num_images: |
|
raise ValueError( |
|
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." |
|
) |
|
|
|
|
|
feature_lens = feature_lens.to(input_ids.device) |
|
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) |
|
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device) |
|
embed_sequence_lengths = ( |
|
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum |
|
) |
|
max_embed_dim = embed_sequence_lengths.max() |
|
|
|
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
special_image_token_mask = special_image_token_mask.long() |
|
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 |
|
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 |
|
if left_padding: |
|
|
|
|
|
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] |
|
|
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
final_input_ids = torch.full( |
|
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
input_ids = input_ids.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] |
|
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices] |
|
final_labels = None |
|
if labels is not None: |
|
labels = labels.to(target_device) |
|
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long) |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] |
|
|
|
|
|
with torch.no_grad(): |
|
image_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
image_to_overwrite[batch_indices, text_to_overwrite] = False |
|
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) |
|
embed_indices = embed_indices.expand(batch_size, max_embed_dim) |
|
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) |
|
|
|
if left_padding: |
|
|
|
max_embed_dim = max_embed_dim.to(target_device) |
|
val = (max_embed_dim - embed_indices) <= embed_seq_lens |
|
else: |
|
|
|
val = embed_indices < embed_seq_lens |
|
image_to_overwrite &= val |
|
|
|
if image_to_overwrite.sum() != num_image_features: |
|
raise ValueError( |
|
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " |
|
f"The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. " |
|
f"This prevents correct indexing and breaks batch generation." |
|
) |
|
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids |
|
|
|
def pack_image_features(self, image_features, image_sizes, image_newline=None): |
|
""" |
|
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors. |
|
|
|
Args: |
|
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`) |
|
List of image feature tensor, each contains all the visual feature of all patches. |
|
image_sizes (`torch.Tensor` of shape `(num_images, 2)`) |
|
Actual image size of each images (H, W). |
|
image_newline (`torch.Tensor` of shape `(embed_dim)`) |
|
New line embedding vector. |
|
Returns: |
|
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`) |
|
feature_lens (`List[int]`) |
|
token length of each image in image_features |
|
""" |
|
new_image_features = [] |
|
feature_lens = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
if image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size |
|
if height * width != base_image_feature.shape[0]: |
|
raise ValueError("The number of patches is not consistent with the image size.") |
|
num_patch_height, num_patch_width = get_anyres_image_grid_shape( |
|
image_sizes[image_idx], |
|
self.config.image_grid_pinpoints, |
|
self.config.vision_config.image_size, |
|
) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
if image_newline is not None: |
|
image_feature = torch.cat( |
|
( |
|
image_feature, |
|
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype), |
|
), |
|
dim=-1, |
|
) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if image_newline is not None: |
|
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0) |
|
new_image_features.append(image_feature) |
|
feature_lens.append(image_feature.size(0)) |
|
image_features = torch.cat(new_image_features, dim=0) |
|
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) |
|
return image_features, feature_lens |
|
|
|
@add_start_docstrings_to_model_forward(OMCHAT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=OmChatCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, OmChatCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, OmChatForConditionalGeneration |
|
|
|
>>> model = OmChatForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
|
|
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images |
|
) |
|
outputs = self.language_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
return outputs |
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
shift_attention_mask = attention_mask[..., 1:] |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
return OmChatCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
|
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.language_model._reorder_cache(*args, **kwargs) |
|
|