|
|
|
import math |
|
from typing import Dict, Iterable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict, select_best_resolution |
|
from transformers.image_transforms import ( |
|
PaddingMode, |
|
convert_to_rgb, |
|
get_resize_output_image_size, |
|
pad, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
get_image_size, |
|
infer_channel_dimension_format, |
|
is_scaled_image, |
|
is_valid_image, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
validate_preprocess_arguments, |
|
) |
|
from transformers.utils import TensorType, is_vision_available, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
def make_batched_images(images) -> List[List[ImageInput]]: |
|
""" |
|
Accepts images in list or nested list format, and makes a list of images for preprocessing. |
|
|
|
Args: |
|
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): |
|
The input image. |
|
|
|
Returns: |
|
list: A list of images. |
|
""" |
|
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): |
|
return [img for img_list in images for img in img_list] |
|
|
|
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): |
|
return images |
|
|
|
elif is_valid_image(images): |
|
return [images] |
|
|
|
raise ValueError(f"Could not make batched video from {images}") |
|
|
|
|
|
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]: |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (`np.array`): |
|
The input image. |
|
patch_size (`int`): |
|
The size of each patch. |
|
input_data_format (`ChannelDimension` or `str`): |
|
The channel dimension format of the input image. |
|
|
|
Returns: |
|
list: A list of np.array representing the patches. |
|
""" |
|
patches = [] |
|
height, width = get_image_size(image, channel_dim=input_data_format) |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
if input_data_format == ChannelDimension.LAST: |
|
patch = image[i : i + patch_size, j : j + patch_size] |
|
else: |
|
patch = image[:, i : i + patch_size, j : j + patch_size] |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array: |
|
""" |
|
Expands an image to a square by adding a background color. |
|
""" |
|
|
|
height, width = get_image_size(image, channel_dim=input_data_format) |
|
if width == height: |
|
return image |
|
elif width > height: |
|
result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color |
|
result[(width - height) // 2 : (width - height) // 2 + height, :] = image |
|
return result |
|
else: |
|
result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color |
|
result[:, (height - width) // 2 : (height - width) // 2 + width] = image |
|
return result |
|
|
|
|
|
def _get_patch_output_size(image, target_resolution, input_data_format): |
|
original_height, original_width = get_image_size(image, channel_dim=input_data_format) |
|
target_height, target_width = target_resolution |
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
return new_height, new_width |
|
|
|
|
|
class OmChatImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a LLaVa-NeXT image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques |
|
for processing high resolution images as explained in the [LLaVa paper](https://arxiv.org/abs/2310.03744). |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by |
|
`do_resize` in the `preprocess` method. |
|
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): |
|
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` |
|
method. |
|
image_grid_pinpoints (`List` *optional*, defaults to `[[896, 448], [448, 896], [896, 896], [448, 1344], [1344, 448]]`): |
|
A list of possible resolutions to use for processing high resolution images. The best resolution is selected |
|
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess` |
|
method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): |
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. |
|
do_center_crop (`bool`, *optional*, defaults to `True`): |
|
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the |
|
`preprocess` method. |
|
crop_size (`Dict[str, int]` *optional*, defaults to 224): |
|
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` |
|
method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in |
|
the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` |
|
method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_pad (`bool`, *optional*, defaults to `True`): |
|
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest |
|
number of patches in the batch. Padding will be applied to the bottom and right with zeros. |
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
Whether to convert the image to RGB. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
image_grid_pinpoints: List = None, |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
do_center_crop: bool = True, |
|
crop_size: Dict[str, int] = None, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = [0.485, 0.456, 0.406], |
|
image_std: Optional[Union[float, List[float]]] = [0.229, 0.224, 0.225], |
|
do_convert_rgb: bool = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"shortest_edge": 448} |
|
size = get_size_dict(size, default_to_square=False) |
|
image_grid_pinpoints = ( |
|
image_grid_pinpoints |
|
if image_grid_pinpoints is not None |
|
else [[448, 896], [896, 448], [896, 896], [1344, 448], [448, 1344],[1344, 1344]] |
|
) |
|
crop_size = crop_size if crop_size is not None else {"height": 448, "width": 448} |
|
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") |
|
|
|
self.do_resize = do_resize |
|
self.size = size |
|
self.image_grid_pinpoints = image_grid_pinpoints |
|
self.resample = resample |
|
self.do_center_crop = do_center_crop |
|
self.crop_size = crop_size |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN |
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD |
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge |
|
resized to keep the input aspect ratio. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Size of the output image. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): |
|
Resampling filter to use when resiizing the image. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format of the image. If not provided, it will be the same as the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format of the input image. If not provided, it will be inferred. |
|
""" |
|
default_to_square = True |
|
if "shortest_edge" in size: |
|
size = size["shortest_edge"] |
|
default_to_square = False |
|
elif "height" in size and "width" in size: |
|
size = (size["height"], size["width"]) |
|
else: |
|
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") |
|
|
|
output_size = get_resize_output_image_size( |
|
image, |
|
size=size, |
|
default_to_square=default_to_square, |
|
input_data_format=input_data_format, |
|
) |
|
|
|
return resize( |
|
image, |
|
size=output_size, |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def pad( |
|
self, |
|
image: np.ndarray, |
|
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]], |
|
mode: PaddingMode = PaddingMode.CONSTANT, |
|
constant_values: Union[float, Iterable[float]] = 0.0, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> np.ndarray: |
|
""" |
|
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`) |
|
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected |
|
as input. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
The image to pad. |
|
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`): |
|
Padding to apply to the edges of the height, width axes. Can be one of three formats: |
|
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis. |
|
- `((before, after),)` yields same before and after pad for height and width. |
|
- `(pad,)` or int is a shortcut for before = after = pad width for all axes. |
|
mode (`PaddingMode`): |
|
The padding mode to use. Can be one of: |
|
- `"constant"`: pads with a constant value. |
|
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the |
|
vector along each axis. |
|
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. |
|
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. |
|
constant_values (`float` or `Iterable[float]`, *optional*): |
|
The value to use for the padding if `mode` is `"constant"`. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use same as the input image. |
|
input_data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use the inferred format of the input image. |
|
|
|
Returns: |
|
`np.ndarray`: The padded image. |
|
|
|
""" |
|
|
|
|
|
if isinstance(padding, int) or len(padding) != 4: |
|
return pad(image, padding, mode, constant_values, data_format, input_data_format) |
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
if mode == PaddingMode.CONSTANT: |
|
image = np.pad(image, padding, mode="constant", constant_values=constant_values) |
|
elif mode == PaddingMode.REFLECT: |
|
image = np.pad(image, padding, mode="reflect") |
|
elif mode == PaddingMode.REPLICATE: |
|
image = np.pad(image, padding, mode="edge") |
|
elif mode == PaddingMode.SYMMETRIC: |
|
image = np.pad(image, padding, mode="symmetric") |
|
else: |
|
raise ValueError(f"Invalid padding mode: {mode}") |
|
image = ( |
|
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image |
|
) |
|
return image |
|
|
|
def _preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: bool = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_center_crop: bool = None, |
|
crop_size: int = None, |
|
do_rescale: bool = None, |
|
rescale_factor: float = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> Image.Image: |
|
""" |
|
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): |
|
Whether to center crop the image. |
|
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): |
|
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
images = make_list_of_images(images) |
|
|
|
if do_resize: |
|
images = [ |
|
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
if do_center_crop: |
|
images = [ |
|
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images |
|
] |
|
|
|
if do_rescale: |
|
images = [ |
|
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
if do_normalize: |
|
images = [ |
|
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) |
|
for image in images |
|
] |
|
|
|
images = [ |
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images |
|
] |
|
|
|
return images |
|
|
|
def _resize_for_patching( |
|
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension |
|
) -> np.array: |
|
""" |
|
Resizes an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (np.array): |
|
The input image. |
|
target_resolution (tuple): |
|
The target resolution (height, width) of the image. |
|
resample (`PILImageResampling`): |
|
Resampling filter to use if resizing the image. |
|
input_data_format (`ChannelDimension` or `str`): |
|
The channel dimension format of the input image. |
|
|
|
Returns: |
|
np.array: The resized and padded image. |
|
""" |
|
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) |
|
|
|
|
|
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format) |
|
|
|
return resized_image |
|
|
|
def _pad_for_patching( |
|
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension |
|
) -> np.array: |
|
""" |
|
Pad an image to a target resolution while maintaining aspect ratio. |
|
""" |
|
target_height, target_width = target_resolution |
|
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) |
|
|
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
|
|
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x))) |
|
|
|
return padded_image |
|
|
|
def get_image_patches( |
|
self, |
|
image: np.array, |
|
grid_pinpoints, |
|
size: tuple, |
|
patch_size: int, |
|
resample: PILImageResampling, |
|
data_format: ChannelDimension, |
|
input_data_format: ChannelDimension, |
|
) -> List[np.array]: |
|
""" |
|
Process an image with variable resolutions by dividing it into patches. |
|
|
|
Args: |
|
image (np.array): |
|
The input image to be processed. |
|
grid_pinpoints (List): |
|
A string representation of a list of possible resolutions. |
|
size (`tuple`): |
|
Size to resize the original image to. |
|
patch_size (`int`): |
|
Size of the patches to divide the image into. |
|
resample (`PILImageResampling`): |
|
Resampling filter to use if resizing the image. |
|
data_format (`ChannelDimension` or `str`): |
|
The channel dimension format for the output image. |
|
input_data_format (`ChannelDimension` or `str`): |
|
The channel dimension format of the input image. |
|
|
|
Returns: |
|
List[np.array]: A list of NumPy arrays containing the processed image patches. |
|
""" |
|
if not isinstance(grid_pinpoints, list): |
|
raise TypeError("grid_pinpoints must be a list of possible resolutions.") |
|
|
|
possible_resolutions = grid_pinpoints |
|
|
|
image_size = get_image_size(image, channel_dim=input_data_format) |
|
best_resolution = select_best_resolution(image_size, possible_resolutions) |
|
resized_image = self._resize_for_patching( |
|
image, best_resolution, resample=resample, input_data_format=input_data_format |
|
) |
|
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format) |
|
|
|
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format) |
|
|
|
|
|
patches = [ |
|
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format) |
|
for patch in patches |
|
] |
|
|
|
resized_original_image = resize( |
|
image, |
|
size=size, |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
|
|
image_patches = [resized_original_image] + patches |
|
|
|
return image_patches |
|
|
|
def _pad_for_batching( |
|
self, |
|
pixel_values: List[np.ndarray], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
""" |
|
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. |
|
|
|
Args: |
|
pixel_values (`List[np.ndarray]`): |
|
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use same as the input image. |
|
input_data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format for the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
If unset, will use the inferred format of the input image. |
|
|
|
Returns: |
|
List[`np.ndarray`]: The padded images. |
|
""" |
|
max_patch = max(len(x) for x in pixel_values) |
|
pixel_values = [ |
|
self.pad( |
|
image, |
|
padding=((0, max_patch - image.shape[0]), (0, 0), (0, 0), (0, 0)), |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
for image in pixel_values |
|
] |
|
|
|
return pixel_values |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: bool = None, |
|
size: Dict[str, int] = None, |
|
image_grid_pinpoints: List = None, |
|
resample: PILImageResampling = None, |
|
do_center_crop: bool = None, |
|
crop_size: int = None, |
|
do_rescale: bool = None, |
|
rescale_factor: float = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
""" |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with |
|
the longest edge resized to keep the input aspect ratio. |
|
image_grid_pinpoints (`List` *optional*, defaults to `self.image_grid_pinpoints`): |
|
A list of possible resolutions to use for processing high resolution images. The best resolution is |
|
selected based on the original size of the image. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): |
|
Whether to center crop the image. |
|
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): |
|
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
Whether to convert the image to RGB. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
|
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
size = size if size is not None else self.size |
|
size = get_size_dict(size, param_name="size", default_to_square=False) |
|
image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints |
|
resample = resample if resample is not None else self.resample |
|
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop |
|
crop_size = crop_size if crop_size is not None else self.crop_size |
|
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
images = make_batched_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
validate_preprocess_arguments( |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
do_center_crop=do_center_crop, |
|
crop_size=crop_size, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
) |
|
|
|
if do_convert_rgb: |
|
images = [convert_to_rgb(image) for image in images] |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if is_scaled_image(images[0]) and do_rescale: |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
if input_data_format is None: |
|
|
|
input_data_format = infer_channel_dimension_format(images[0]) |
|
|
|
new_images = [] |
|
image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images] |
|
num_patches = [] |
|
for image in images: |
|
|
|
|
|
image_patches = self.get_image_patches( |
|
image, |
|
image_grid_pinpoints, |
|
size=(size["shortest_edge"], size["shortest_edge"]), |
|
patch_size=crop_size["height"], |
|
resample=resample, |
|
data_format=input_data_format, |
|
input_data_format=input_data_format, |
|
) |
|
|
|
|
|
pixel_values = self._preprocess( |
|
image_patches, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
do_center_crop=do_center_crop, |
|
crop_size=crop_size, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
num_patches.append(len(pixel_values)) |
|
pixel_values = np.array(pixel_values) |
|
new_images.append(pixel_values) |
|
processed_images = self._pad_for_batching(new_images) |
|
|
|
return BatchFeature( |
|
|
|
data={"pixel_values": processed_images, "num_patches":num_patches}, tensor_type=return_tensors |
|
) |
|
|