|
import copy |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.utils.checkpoint |
|
from packaging import version |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss |
|
from transformers.activations import ACT2FN, gelu |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.utils import logging |
|
from transformers import RobertaConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"roberta-base", |
|
"roberta-large", |
|
"roberta-large-mnli", |
|
"distilroberta-base", |
|
"roberta-base-openai-detector", |
|
"roberta-large-openai-detector", |
|
|
|
] |
|
|
|
|
|
class StructRobertaConfig(RobertaConfig): |
|
model_type = "roberta" |
|
|
|
def __init__( |
|
self, |
|
n_parser_layers=4, |
|
conv_size=9, |
|
relations=("head", "child"), |
|
weight_act="softmax", |
|
n_cntxt_layers=3, |
|
n_cntxt_layers_2=0, |
|
**kwargs,): |
|
|
|
super().__init__(**kwargs) |
|
self.n_cntxt_layers = n_cntxt_layers |
|
self.n_parser_layers = n_parser_layers |
|
self.n_cntxt_layers_2 = n_cntxt_layers_2 |
|
self.conv_size = conv_size |
|
self.relations = relations |
|
self.weight_act = weight_act |
|
|
|
class Conv1d(nn.Module): |
|
"""1D convolution layer.""" |
|
|
|
def __init__(self, hidden_size, kernel_size, dilation=1): |
|
"""Initialization. |
|
|
|
Args: |
|
hidden_size: dimension of input embeddings |
|
kernel_size: convolution kernel size |
|
dilation: the spacing between the kernel points |
|
""" |
|
super(Conv1d, self).__init__() |
|
|
|
if kernel_size % 2 == 0: |
|
padding = (kernel_size // 2) * dilation |
|
self.shift = True |
|
else: |
|
padding = ((kernel_size - 1) // 2) * dilation |
|
self.shift = False |
|
self.conv = nn.Conv1d( |
|
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation |
|
) |
|
|
|
def forward(self, x): |
|
"""Compute convolution. |
|
|
|
Args: |
|
x: input embeddings |
|
Returns: |
|
conv_output: convolution results |
|
""" |
|
|
|
if self.shift: |
|
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:] |
|
else: |
|
return self.conv(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
class RobertaEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size |
|
) |
|
self.token_type_embeddings = nn.Embedding( |
|
config.type_vocab_size, config.hidden_size |
|
) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) |
|
) |
|
if version.parse(torch.__version__) > version.parse("1.6.0"): |
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros(self.position_ids.size(), dtype=torch.long), |
|
persistent=False, |
|
) |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, |
|
config.hidden_size, |
|
padding_idx=self.padding_idx, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
past_key_values_length=0, |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids( |
|
input_ids, self.padding_idx, past_key_values_length |
|
) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds( |
|
inputs_embeds |
|
) |
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand( |
|
input_shape[0], seq_length |
|
) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=self.position_ids.device |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, |
|
sequence_length + self.padding_idx + 1, |
|
dtype=torch.long, |
|
device=inputs_embeds.device, |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
|
|
class RobertaSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr( |
|
config, "embedding_size" |
|
): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding( |
|
2 * config.max_position_embeddings - 1, self.attention_head_size |
|
) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
parser_att_mask=None, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if ( |
|
self.position_embedding_type == "relative_key" |
|
or self.position_embedding_type == "relative_key_query" |
|
): |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(-1, 1) |
|
position_ids_r = torch.arange( |
|
seq_length, dtype=torch.long, device=hidden_states.device |
|
).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding( |
|
distance + self.max_position_embeddings - 1 |
|
) |
|
positional_embedding = positional_embedding.to( |
|
dtype=query_layer.dtype |
|
) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum( |
|
"bhld,lrd->bhlr", query_layer, positional_embedding |
|
) |
|
relative_position_scores_key = torch.einsum( |
|
"bhrd,lrd->bhlr", key_layer, positional_embedding |
|
) |
|
attention_scores = ( |
|
attention_scores |
|
+ relative_position_scores_query |
|
+ relative_position_scores_key |
|
) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
if parser_att_mask is None: |
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
else: |
|
attention_probs = torch.sigmoid(attention_scores) * parser_att_mask |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = ( |
|
(context_layer, attention_probs) if output_attentions else (context_layer,) |
|
) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class RobertaSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor |
|
) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = RobertaSelfAttention( |
|
config, position_embedding_type=position_embedding_type |
|
) |
|
self.output = RobertaSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = ( |
|
self.self.attention_head_size * self.self.num_attention_heads |
|
) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
parser_att_mask=None, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
parser_att_mask=parser_att_mask, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[ |
|
1: |
|
] |
|
return outputs |
|
|
|
|
|
|
|
class RobertaIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor |
|
) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
|
|
class RobertaLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = RobertaAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError( |
|
f"{self} should be used as a decoder model if cross attention is added" |
|
) |
|
self.crossattention = RobertaAttention( |
|
config, position_embedding_type="absolute" |
|
) |
|
self.intermediate = RobertaIntermediate(config) |
|
self.output = RobertaOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
parser_att_mask=None, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = ( |
|
past_key_value[:2] if past_key_value is not None else None |
|
) |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
parser_att_mask=parser_att_mask, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[ |
|
1: |
|
] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = ( |
|
past_key_value[-2:] if past_key_value is not None else None |
|
) |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = ( |
|
outputs + cross_attention_outputs[1:-1] |
|
) |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
|
|
class RobertaEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[RobertaLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
parser_att_mask=None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
if parser_att_mask is not None: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
parser_att_mask=parser_att_mask[i]) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
parser_att_mask=None) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class RobertaPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class RobertaPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = RobertaConfig |
|
base_model_prefix = "roberta" |
|
supports_gradient_checkpointing = True |
|
|
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, RobertaEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
def update_keys_to_ignore(self, config, del_keys_to_ignore): |
|
"""Remove some keys from ignore list""" |
|
if not config.tie_word_embeddings: |
|
|
|
self._keys_to_ignore_on_save = [ |
|
k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore |
|
] |
|
self._keys_to_ignore_on_load_missing = [ |
|
k |
|
for k in self._keys_to_ignore_on_load_missing |
|
if k not in del_keys_to_ignore |
|
] |
|
|
|
|
|
ROBERTA_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`RobertaConfig`]): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
ROBERTA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class RobertaModel(RobertaPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is |
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
|
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = RobertaEmbeddings(config) |
|
self.encoder = RobertaEncoder(config) |
|
|
|
self.pooler = RobertaPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
parser_att_mask=None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = ( |
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
((batch_size, seq_length + past_key_values_length)), device=device |
|
) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand( |
|
batch_size, seq_length |
|
) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=device |
|
) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( |
|
attention_mask, input_shape, device |
|
) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask |
|
) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
parser_att_mask=parser_att_mask, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = ( |
|
self.pooler(sequence_output) if self.pooler is not None else None |
|
) |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
class StructRoberta(RobertaPreTrainedModel): |
|
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] |
|
_keys_to_ignore_on_load_missing = [ |
|
r"position_ids", |
|
r"lm_head.decoder.weight", |
|
r"lm_head.decoder.bias", |
|
] |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
|
|
if config.n_cntxt_layers > 0: |
|
config_cntxt = copy.deepcopy(config) |
|
config_cntxt.num_hidden_layers = config.n_cntxt_layers |
|
|
|
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False) |
|
|
|
if config.n_cntxt_layers_2 > 0: |
|
self.parser_layers_1 = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(int(config.n_parser_layers/2)) |
|
] |
|
) |
|
|
|
self.distance_ff_1 = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff_1 = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight_1 = nn.Parameter( |
|
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight_1.data.normal_(0, 0.1) |
|
|
|
self._scaler_1 = nn.Parameter(torch.zeros(2)) |
|
|
|
config_cntxt_2 = copy.deepcopy(config) |
|
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2 |
|
|
|
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False) |
|
|
|
|
|
self.parser_layers_2 = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(int(config.n_parser_layers/2)) |
|
] |
|
) |
|
|
|
self.distance_ff_2 = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff_2 = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight_2 = nn.Parameter( |
|
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight_2.data.normal_(0, 0.1) |
|
|
|
self._scaler_2 = nn.Parameter(torch.zeros(2)) |
|
|
|
else: |
|
self.parser_layers = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(config.n_parser_layers) |
|
] |
|
) |
|
|
|
self.distance_ff = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight = nn.Parameter( |
|
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight.data.normal_(0, 0.1) |
|
|
|
self._scaler = nn.Parameter(torch.zeros(2)) |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
|
|
if config.n_cntxt_layers > 0: |
|
self.cntxt_layers.embeddings = self.roberta.embeddings |
|
if config.n_cntxt_layers_2 > 0: |
|
self.cntxt_layers_2.embeddings = self.roberta.embeddings |
|
|
|
self.lm_head = RobertaLMHead(config) |
|
|
|
self.pad = config.pad_token_id |
|
|
|
|
|
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"]) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@property |
|
def scaler(self): |
|
return self._scaler.exp() |
|
|
|
@property |
|
def scaler_1(self): |
|
return self._scaler_1.exp() |
|
|
|
@property |
|
def scaler_2(self): |
|
return self._scaler_2.exp() |
|
|
|
@property |
|
def rel_weight(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight, dim=-1) |
|
|
|
@property |
|
def rel_weight_1(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight_1) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight_1, dim=-1) |
|
|
|
|
|
@property |
|
def rel_weight_2(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight_2) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight_2, dim=-1) |
|
|
|
|
|
def compute_block(self, distance, height, n_cntxt_layers=0): |
|
"""Compute constituents from distance and height.""" |
|
|
|
if n_cntxt_layers>0: |
|
if n_cntxt_layers == 1: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0] |
|
elif n_cntxt_layers == 2: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0] |
|
else: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0] |
|
|
|
gamma = torch.sigmoid(-beta_logits) |
|
ones = torch.ones_like(gamma) |
|
|
|
block_mask_left = cummin( |
|
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1 |
|
) |
|
block_mask_left = block_mask_left - F.pad( |
|
block_mask_left[:, :, :-1], (1, 0), value=0 |
|
) |
|
block_mask_left.tril_(0) |
|
|
|
block_mask_right = cummin( |
|
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1 |
|
) |
|
block_mask_right = block_mask_right - F.pad( |
|
block_mask_right[:, :, 1:], (0, 1), value=0 |
|
) |
|
block_mask_right.triu_(0) |
|
|
|
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :] |
|
block = cumsum(block_mask_left).tril(0) + cumsum( |
|
block_mask_right, reverse=True |
|
).triu(1) |
|
|
|
return block_p, block |
|
|
|
def compute_head(self, height, n_cntxt_layers=0): |
|
"""Estimate head for each constituent.""" |
|
|
|
_, length = height.size() |
|
if n_cntxt_layers>0: |
|
if n_cntxt_layers == 1: |
|
head_logits = height * self.scaler_1[1] |
|
elif n_cntxt_layers == 2: |
|
head_logits = height * self.scaler_2[1] |
|
else: |
|
head_logits = height * self.scaler[1] |
|
index = torch.arange(length, device=height.device) |
|
|
|
mask = (index[:, None, None] <= index[None, None, :]) * ( |
|
index[None, None, :] <= index[None, :, None] |
|
) |
|
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1) |
|
head_logits.masked_fill_(~mask[None, :, :, :], -1e9) |
|
|
|
head_p = torch.softmax(head_logits, dim=-1) |
|
|
|
return head_p |
|
|
|
def parse(self, x, embs=None, n_cntxt_layers=0): |
|
"""Parse input sentence. |
|
|
|
Args: |
|
x: input tokens (required). |
|
pos: position for each token (optional). |
|
Returns: |
|
distance: syntactic distance |
|
height: syntactic height |
|
""" |
|
|
|
mask = x != self.pad |
|
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0) |
|
|
|
if embs is None: |
|
h = self.roberta.embeddings(x) |
|
else: |
|
h = embs |
|
|
|
if n_cntxt_layers > 0: |
|
if n_cntxt_layers == 1: |
|
parser_layers = self.parser_layers_1 |
|
height_ff = self.height_ff_1 |
|
distance_ff = self.distance_ff_1 |
|
elif n_cntxt_layers == 2: |
|
parser_layers = self.parser_layers_2 |
|
height_ff = self.height_ff_2 |
|
distance_ff = self.distance_ff_2 |
|
for i in range(int(self.config.n_parser_layers/2)): |
|
h = h.masked_fill(~mask[:, :, None], 0) |
|
h = parser_layers[i](h) |
|
|
|
height = height_ff(h).squeeze(-1) |
|
height.masked_fill_(~mask, -1e9) |
|
|
|
distance = distance_ff(h).squeeze(-1) |
|
distance.masked_fill_(~mask_shifted, 1e9) |
|
|
|
|
|
length = distance.size(1) |
|
height_max = height[:, None, :].expand(-1, length, -1) |
|
height_max = torch.cummax( |
|
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1 |
|
)[0].triu(0) |
|
|
|
margin_left = torch.relu( |
|
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max |
|
) |
|
margin_right = torch.relu(distance[:, None, :] - height_max) |
|
margin = torch.where( |
|
margin_left > margin_right, margin_right, margin_left |
|
).triu(0) |
|
|
|
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1) |
|
margin.masked_fill_(~margin_mask, 0) |
|
margin = margin.max() |
|
|
|
distance = distance - margin |
|
else: |
|
for i in range(self.config.n_parser_layers): |
|
h = h.masked_fill(~mask[:, :, None], 0) |
|
h = self.parser_layers[i](h) |
|
|
|
height = self.height_ff(h).squeeze(-1) |
|
height.masked_fill_(~mask, -1e9) |
|
|
|
distance = self.distance_ff(h).squeeze(-1) |
|
distance.masked_fill_(~mask_shifted, 1e9) |
|
|
|
|
|
length = distance.size(1) |
|
height_max = height[:, None, :].expand(-1, length, -1) |
|
height_max = torch.cummax( |
|
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1 |
|
)[0].triu(0) |
|
|
|
margin_left = torch.relu( |
|
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max |
|
) |
|
margin_right = torch.relu(distance[:, None, :] - height_max) |
|
margin = torch.where( |
|
margin_left > margin_right, margin_right, margin_left |
|
).triu(0) |
|
|
|
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1) |
|
margin.masked_fill_(~margin_mask, 0) |
|
margin = margin.max() |
|
|
|
distance = distance - margin |
|
|
|
return distance, height |
|
|
|
def generate_mask(self, x, distance, height, n_cntxt_layers=0): |
|
"""Compute head and cibling distribution for each token.""" |
|
|
|
bsz, length = x.size() |
|
|
|
eye = torch.eye(length, device=x.device, dtype=torch.bool) |
|
eye = eye[None, :, :].expand((bsz, -1, -1)) |
|
|
|
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers) |
|
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers) |
|
head = torch.einsum("blij,bijh->blh", block_p, head_p) |
|
head = head.masked_fill(eye, 0) |
|
child = head.transpose(1, 2) |
|
cibling = torch.bmm(head, child).masked_fill(eye, 0) |
|
|
|
rel_list = [] |
|
if "head" in self.config.relations: |
|
rel_list.append(head) |
|
if "child" in self.config.relations: |
|
rel_list.append(child) |
|
if "cibling" in self.config.relations: |
|
rel_list.append(cibling) |
|
|
|
rel = torch.stack(rel_list, dim=1) |
|
|
|
if n_cntxt_layers > 0: |
|
if n_cntxt_layers == 1: |
|
rel_weight = self.rel_weight_1 |
|
elif n_cntxt_layers == 2: |
|
rel_weight = self.rel_weight_2 |
|
else: |
|
rel_weight = self.rel_weight |
|
|
|
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel) |
|
|
|
if n_cntxt_layers == 1: |
|
num_layers = self.cntxt_layers_2.config.num_hidden_layers |
|
else: |
|
num_layers = self.roberta.config.num_hidden_layers |
|
|
|
att_mask = dep.reshape( |
|
num_layers, |
|
bsz, |
|
self.config.num_attention_heads, |
|
length, |
|
length, |
|
) |
|
|
|
return att_mask, cibling, head, block |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if self.config.n_cntxt_layers > 0: |
|
cntxt_outputs = self.cntxt_layers( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict) |
|
|
|
|
|
if self.config.n_cntxt_layers_2 > 0: |
|
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1) |
|
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1) |
|
|
|
cntxt_outputs_2 = self.cntxt_layers_2( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
parser_att_mask=att_mask_1) |
|
|
|
sequence_output = cntxt_outputs_2[0] |
|
|
|
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2) |
|
|
|
elif self.config.n_cntxt_layers > 0: |
|
distance, height = self.parse(input_ids, cntxt_outputs[0]) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height) |
|
else: |
|
distance, height = self.parse(input_ids) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height) |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
parser_att_mask=att_mask, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ( |
|
((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
) |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class RobertaLMHead(nn.Module): |
|
"""Roberta Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
self.bias = self.decoder.bias |
|
|
|
|
|
class StructRobertaForSequenceClassification(RobertaPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
if config.n_cntxt_layers > 0: |
|
config_cntxt = copy.deepcopy(config) |
|
config_cntxt.num_hidden_layers = config.n_cntxt_layers |
|
|
|
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False) |
|
|
|
if config.n_cntxt_layers_2 > 0: |
|
self.parser_layers_1 = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(int(config.n_parser_layers/2)) |
|
] |
|
) |
|
|
|
self.distance_ff_1 = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff_1 = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight_1 = nn.Parameter( |
|
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight_1.data.normal_(0, 0.1) |
|
|
|
self._scaler_1 = nn.Parameter(torch.zeros(2)) |
|
|
|
config_cntxt_2 = copy.deepcopy(config) |
|
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2 |
|
|
|
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False) |
|
|
|
|
|
self.parser_layers_2 = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(int(config.n_parser_layers/2)) |
|
] |
|
) |
|
|
|
self.distance_ff_2 = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff_2 = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight_2 = nn.Parameter( |
|
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight_2.data.normal_(0, 0.1) |
|
|
|
self._scaler_2 = nn.Parameter(torch.zeros(2)) |
|
|
|
else: |
|
self.parser_layers = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
Conv1d(config.hidden_size, config.conv_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
) |
|
for i in range(config.n_parser_layers) |
|
] |
|
) |
|
|
|
self.distance_ff = nn.Sequential( |
|
Conv1d(config.hidden_size, 2), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
self.height_ff = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.LayerNorm(config.hidden_size, elementwise_affine=False), |
|
nn.Tanh(), |
|
nn.Linear(config.hidden_size, 1), |
|
) |
|
|
|
n_rel = len(config.relations) |
|
self._rel_weight = nn.Parameter( |
|
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel)) |
|
) |
|
self._rel_weight.data.normal_(0, 0.1) |
|
|
|
self._scaler = nn.Parameter(torch.zeros(2)) |
|
|
|
self.roberta = RobertaModel(config, add_pooling_layer=False) |
|
|
|
if config.n_cntxt_layers > 0: |
|
self.cntxt_layers.embeddings = self.roberta.embeddings |
|
if config.n_cntxt_layers_2 > 0: |
|
self.cntxt_layers_2.embeddings = self.roberta.embeddings |
|
|
|
|
|
self.pad = config.pad_token_id |
|
self.classifier = RobertaClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@property |
|
def scaler(self): |
|
return self._scaler.exp() |
|
|
|
@property |
|
def scaler_1(self): |
|
return self._scaler_1.exp() |
|
|
|
@property |
|
def scaler_2(self): |
|
return self._scaler_2.exp() |
|
|
|
@property |
|
def rel_weight(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight, dim=-1) |
|
|
|
@property |
|
def rel_weight_1(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight_1) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight_1, dim=-1) |
|
|
|
|
|
@property |
|
def rel_weight_2(self): |
|
if self.config.weight_act == "sigmoid": |
|
return torch.sigmoid(self._rel_weight_2) |
|
elif self.config.weight_act == "softmax": |
|
return torch.softmax(self._rel_weight_2, dim=-1) |
|
|
|
|
|
def compute_block(self, distance, height, n_cntxt_layers=0): |
|
"""Compute constituents from distance and height.""" |
|
|
|
if n_cntxt_layers>0: |
|
if n_cntxt_layers == 1: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0] |
|
elif n_cntxt_layers == 2: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0] |
|
else: |
|
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0] |
|
|
|
gamma = torch.sigmoid(-beta_logits) |
|
ones = torch.ones_like(gamma) |
|
|
|
block_mask_left = cummin( |
|
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1 |
|
) |
|
block_mask_left = block_mask_left - F.pad( |
|
block_mask_left[:, :, :-1], (1, 0), value=0 |
|
) |
|
block_mask_left.tril_(0) |
|
|
|
block_mask_right = cummin( |
|
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1 |
|
) |
|
block_mask_right = block_mask_right - F.pad( |
|
block_mask_right[:, :, 1:], (0, 1), value=0 |
|
) |
|
block_mask_right.triu_(0) |
|
|
|
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :] |
|
block = cumsum(block_mask_left).tril(0) + cumsum( |
|
block_mask_right, reverse=True |
|
).triu(1) |
|
|
|
return block_p, block |
|
|
|
def compute_head(self, height, n_cntxt_layers=0): |
|
"""Estimate head for each constituent.""" |
|
|
|
_, length = height.size() |
|
if n_cntxt_layers>0: |
|
if n_cntxt_layers == 1: |
|
head_logits = height * self.scaler_1[1] |
|
elif n_cntxt_layers == 2: |
|
head_logits = height * self.scaler_2[1] |
|
else: |
|
head_logits = height * self.scaler[1] |
|
index = torch.arange(length, device=height.device) |
|
|
|
mask = (index[:, None, None] <= index[None, None, :]) * ( |
|
index[None, None, :] <= index[None, :, None] |
|
) |
|
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1) |
|
head_logits.masked_fill_(~mask[None, :, :, :], -1e9) |
|
|
|
head_p = torch.softmax(head_logits, dim=-1) |
|
|
|
return head_p |
|
|
|
def parse(self, x, embs=None, n_cntxt_layers=0): |
|
"""Parse input sentence. |
|
|
|
Args: |
|
x: input tokens (required). |
|
pos: position for each token (optional). |
|
Returns: |
|
distance: syntactic distance |
|
height: syntactic height |
|
""" |
|
|
|
mask = x != self.pad |
|
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0) |
|
|
|
if embs is None: |
|
h = self.roberta.embeddings(x) |
|
else: |
|
h = embs |
|
|
|
if n_cntxt_layers > 0: |
|
if n_cntxt_layers == 1: |
|
parser_layers = self.parser_layers_1 |
|
height_ff = self.height_ff_1 |
|
distance_ff = self.distance_ff_1 |
|
elif n_cntxt_layers == 2: |
|
parser_layers = self.parser_layers_2 |
|
height_ff = self.height_ff_2 |
|
distance_ff = self.distance_ff_2 |
|
for i in range(int(self.config.n_parser_layers/2)): |
|
h = h.masked_fill(~mask[:, :, None], 0) |
|
h = parser_layers[i](h) |
|
|
|
height = height_ff(h).squeeze(-1) |
|
height.masked_fill_(~mask, -1e9) |
|
|
|
distance = distance_ff(h).squeeze(-1) |
|
distance.masked_fill_(~mask_shifted, 1e9) |
|
|
|
|
|
length = distance.size(1) |
|
height_max = height[:, None, :].expand(-1, length, -1) |
|
height_max = torch.cummax( |
|
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1 |
|
)[0].triu(0) |
|
|
|
margin_left = torch.relu( |
|
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max |
|
) |
|
margin_right = torch.relu(distance[:, None, :] - height_max) |
|
margin = torch.where( |
|
margin_left > margin_right, margin_right, margin_left |
|
).triu(0) |
|
|
|
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1) |
|
margin.masked_fill_(~margin_mask, 0) |
|
margin = margin.max() |
|
|
|
distance = distance - margin |
|
else: |
|
for i in range(self.config.n_parser_layers): |
|
h = h.masked_fill(~mask[:, :, None], 0) |
|
h = self.parser_layers[i](h) |
|
|
|
height = self.height_ff(h).squeeze(-1) |
|
height.masked_fill_(~mask, -1e9) |
|
|
|
distance = self.distance_ff(h).squeeze(-1) |
|
distance.masked_fill_(~mask_shifted, 1e9) |
|
|
|
|
|
length = distance.size(1) |
|
height_max = height[:, None, :].expand(-1, length, -1) |
|
height_max = torch.cummax( |
|
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1 |
|
)[0].triu(0) |
|
|
|
margin_left = torch.relu( |
|
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max |
|
) |
|
margin_right = torch.relu(distance[:, None, :] - height_max) |
|
margin = torch.where( |
|
margin_left > margin_right, margin_right, margin_left |
|
).triu(0) |
|
|
|
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1) |
|
margin.masked_fill_(~margin_mask, 0) |
|
margin = margin.max() |
|
|
|
distance = distance - margin |
|
|
|
return distance, height |
|
|
|
def generate_mask(self, x, distance, height, n_cntxt_layers=0): |
|
"""Compute head and cibling distribution for each token.""" |
|
|
|
bsz, length = x.size() |
|
|
|
eye = torch.eye(length, device=x.device, dtype=torch.bool) |
|
eye = eye[None, :, :].expand((bsz, -1, -1)) |
|
|
|
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers) |
|
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers) |
|
head = torch.einsum("blij,bijh->blh", block_p, head_p) |
|
head = head.masked_fill(eye, 0) |
|
child = head.transpose(1, 2) |
|
cibling = torch.bmm(head, child).masked_fill(eye, 0) |
|
|
|
rel_list = [] |
|
if "head" in self.config.relations: |
|
rel_list.append(head) |
|
if "child" in self.config.relations: |
|
rel_list.append(child) |
|
if "cibling" in self.config.relations: |
|
rel_list.append(cibling) |
|
|
|
rel = torch.stack(rel_list, dim=1) |
|
|
|
if n_cntxt_layers > 0: |
|
if n_cntxt_layers == 1: |
|
rel_weight = self.rel_weight_1 |
|
elif n_cntxt_layers == 2: |
|
rel_weight = self.rel_weight_2 |
|
else: |
|
rel_weight = self.rel_weight |
|
|
|
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel) |
|
|
|
if n_cntxt_layers == 1: |
|
num_layers = self.cntxt_layers_2.config.num_hidden_layers |
|
else: |
|
num_layers = self.roberta.config.num_hidden_layers |
|
|
|
att_mask = dep.reshape( |
|
num_layers, |
|
bsz, |
|
self.config.num_attention_heads, |
|
length, |
|
length, |
|
) |
|
|
|
return att_mask, cibling, head, block |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.n_cntxt_layers > 0: |
|
cntxt_outputs = self.cntxt_layers( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict) |
|
|
|
|
|
if self.config.n_cntxt_layers_2 > 0: |
|
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1) |
|
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1) |
|
|
|
cntxt_outputs_2 = self.cntxt_layers_2( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
parser_att_mask=att_mask_1) |
|
|
|
sequence_output = cntxt_outputs_2[0] |
|
|
|
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2) |
|
|
|
elif self.config.n_cntxt_layers > 0: |
|
distance, height = self.parse(input_ids, cntxt_outputs[0]) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height) |
|
else: |
|
distance, height = self.parse(input_ids) |
|
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height) |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
parser_att_mask=att_mask, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class RobertaClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
def create_position_ids_from_input_ids( |
|
input_ids, padding_idx, past_key_values_length=0 |
|
): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = ( |
|
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length |
|
) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
def cumprod(x, reverse=False, exclusive=False): |
|
"""cumulative product.""" |
|
if reverse: |
|
x = x.flip([-1]) |
|
|
|
if exclusive: |
|
x = F.pad(x[:, :, :-1], (1, 0), value=1) |
|
|
|
cx = x.cumprod(-1) |
|
|
|
if reverse: |
|
cx = cx.flip([-1]) |
|
return cx |
|
|
|
|
|
def cumsum(x, reverse=False, exclusive=False): |
|
"""cumulative sum.""" |
|
bsz, _, length = x.size() |
|
device = x.device |
|
if reverse: |
|
if exclusive: |
|
w = torch.ones([bsz, length, length], device=device).tril(-1) |
|
else: |
|
w = torch.ones([bsz, length, length], device=device).tril(0) |
|
cx = torch.bmm(x, w) |
|
else: |
|
if exclusive: |
|
w = torch.ones([bsz, length, length], device=device).triu(1) |
|
else: |
|
w = torch.ones([bsz, length, length], device=device).triu(0) |
|
cx = torch.bmm(x, w) |
|
return cx |
|
|
|
|
|
def cummin(x, reverse=False, exclusive=False, max_value=1e9): |
|
"""cumulative min.""" |
|
if reverse: |
|
if exclusive: |
|
x = F.pad(x[:, :, 1:], (0, 1), value=max_value) |
|
x = x.flip([-1]).cummin(-1)[0].flip([-1]) |
|
else: |
|
if exclusive: |
|
x = F.pad(x[:, :, :-1], (1, 0), value=max_value) |
|
x = x.cummin(-1)[0] |
|
return x |
|
|