omarelshehy commited on
Commit
ebeede7
1 Parent(s): 1c8ff0a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +224 -0
README.md ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FacebookAI/xlm-roberta-large
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - mteb
21
+ model-index:
22
+ - name: omarelshehy/Arabic-English-Matryoshka-STS
23
+ results:
24
+ - dataset:
25
+ config: en-ar
26
+ name: MTEB STS17 (en-ar)
27
+ revision: faeb762787bd10488a50c8b5be4a3b82e411949c
28
+ split: test
29
+ type: mteb/sts17-crosslingual-sts
30
+ metrics:
31
+ - type: cosine_pearson
32
+ value: 79.79480510851795
33
+ - type: cosine_spearman
34
+ value: 79.67609346073252
35
+ - type: euclidean_pearson
36
+ value: 81.64087935350051
37
+ - type: euclidean_spearman
38
+ value: 80.52588414802709
39
+ - type: main_score
40
+ value: 79.67609346073252
41
+ - type: manhattan_pearson
42
+ value: 81.57042957417305
43
+ - type: manhattan_spearman
44
+ value: 80.44331526051143
45
+ - type: pearson
46
+ value: 79.79480418294698
47
+ - type: spearman
48
+ value: 79.67609346073252
49
+ task:
50
+ type: STS
51
+ - dataset:
52
+ config: ar-ar
53
+ name: MTEB STS17 (ar-ar)
54
+ revision: faeb762787bd10488a50c8b5be4a3b82e411949c
55
+ split: test
56
+ type: mteb/sts17-crosslingual-sts
57
+ metrics:
58
+ - type: cosine_pearson
59
+ value: 82.22889478671283
60
+ - type: cosine_spearman
61
+ value: 83.0533648934447
62
+ - type: euclidean_pearson
63
+ value: 81.15891941165452
64
+ - type: euclidean_spearman
65
+ value: 82.14034597386936
66
+ - type: main_score
67
+ value: 83.0533648934447
68
+ - type: manhattan_pearson
69
+ value: 81.17463976232014
70
+ - type: manhattan_spearman
71
+ value: 82.09804987736345
72
+ - type: pearson
73
+ value: 82.22889389569819
74
+ - type: spearman
75
+ value: 83.0529662284269
76
+ task:
77
+ type: STS
78
+ - dataset:
79
+ config: en-en
80
+ name: MTEB STS17 (en-en)
81
+ revision: faeb762787bd10488a50c8b5be4a3b82e411949c
82
+ split: test
83
+ type: mteb/sts17-crosslingual-sts
84
+ metrics:
85
+ - type: cosine_pearson
86
+ value: 87.17053120821998
87
+ - type: cosine_spearman
88
+ value: 87.05959159411456
89
+ - type: euclidean_pearson
90
+ value: 87.63706739480517
91
+ - type: euclidean_spearman
92
+ value: 87.7675347222274
93
+ - type: main_score
94
+ value: 87.05959159411456
95
+ - type: manhattan_pearson
96
+ value: 87.7006832512623
97
+ - type: manhattan_spearman
98
+ value: 87.80128473941168
99
+ - type: pearson
100
+ value: 87.17053012311975
101
+ - type: spearman
102
+ value: 87.05959159411456
103
+ task:
104
+ type: STS
105
+ Language:
106
+ - ar
107
+ - en
108
+ ---
109
+
110
+ # SentenceTransformer based on FacebookAI/xlm-roberta-large
111
+
112
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
113
+
114
+ ## Model Details
115
+
116
+ ### Model Description
117
+ - **Model Type:** Sentence Transformer
118
+ - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
119
+ - **Maximum Sequence Length:** 512 tokens
120
+ - **Output Dimensionality:** 1024 tokens
121
+ - **Similarity Function:** Cosine Similarity
122
+ <!-- - **Training Dataset:** Unknown -->
123
+ <!-- - **Language:** Unknown -->
124
+ <!-- - **License:** Unknown -->
125
+
126
+
127
+
128
+ ## Usage
129
+
130
+ ### Direct Usage (Sentence Transformers)
131
+
132
+ First install the Sentence Transformers library:
133
+
134
+ ```bash
135
+ pip install -U sentence-transformers
136
+ ```
137
+
138
+ Then you can load this model and run inference.
139
+ ```python
140
+ from sentence_transformers import SentenceTransformer
141
+
142
+ # Download from the 🤗 Hub
143
+ model = SentenceTransformer("omarelshehy/Arabic-English-Matryoshka-STS")
144
+ # Run inference
145
+ sentences = [
146
+ 'حب سعيد الواضح للأدب والموسيقى الغربية يتصادم باستمرار مع غضبه الصالح لما فعله الغرب للبقية.',
147
+ 'Said loves Western literature and music but is angry about what the West has done to the rest.',
148
+ 'سعيد يعتقد أن الغرب لديه أفضل من كل شيء.',
149
+ ]
150
+ embeddings = model.encode(sentences)
151
+ print(embeddings.shape)
152
+ # [3, 1024]
153
+
154
+ # Get the similarity scores for the embeddings
155
+ similarities = model.similarity(embeddings, embeddings)
156
+ print(similarities.shape)
157
+ # [3, 3]
158
+ ```
159
+
160
+ <!--
161
+ ### Direct Usage (Transformers)
162
+
163
+ <details><summary>Click to see the direct usage in Transformers</summary>
164
+
165
+ </details>
166
+ -->
167
+
168
+ <!--
169
+ ### Downstream Usage (Sentence Transformers)
170
+
171
+ You can finetune this model on your own dataset.
172
+
173
+ <details><summary>Click to expand</summary>
174
+
175
+ </details>
176
+ -->
177
+
178
+ <!--
179
+ ### Out-of-Scope Use
180
+
181
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
182
+ -->
183
+
184
+
185
+ ## Citation
186
+
187
+ ### BibTeX
188
+
189
+ #### Sentence Transformers
190
+ ```bibtex
191
+ @inproceedings{reimers-2019-sentence-bert,
192
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
193
+ author = "Reimers, Nils and Gurevych, Iryna",
194
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
195
+ month = "11",
196
+ year = "2019",
197
+ publisher = "Association for Computational Linguistics",
198
+ url = "https://arxiv.org/abs/1908.10084",
199
+ }
200
+ ```
201
+
202
+ #### MatryoshkaLoss
203
+ ```bibtex
204
+ @misc{kusupati2024matryoshka,
205
+ title={Matryoshka Representation Learning},
206
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
207
+ year={2024},
208
+ eprint={2205.13147},
209
+ archivePrefix={arXiv},
210
+ primaryClass={cs.LG}
211
+ }
212
+ ```
213
+
214
+ #### MultipleNegativesRankingLoss
215
+ ```bibtex
216
+ @misc{henderson2017efficient,
217
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
218
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
219
+ year={2017},
220
+ eprint={1705.00652},
221
+ archivePrefix={arXiv},
222
+ primaryClass={cs.CL}
223
+ }
224
+ ```