omarelsayeed
commited on
Commit
·
d5244f8
1
Parent(s):
fc96521
Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +7 -0
- README.md +126 -0
- config.json +149 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 256,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
+
def mean_pooling(model_output, attention_mask):
|
48 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
+
|
52 |
+
|
53 |
+
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
+
|
56 |
+
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
+
|
60 |
+
# Tokenize sentences
|
61 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
+
|
63 |
+
# Compute token embeddings
|
64 |
+
with torch.no_grad():
|
65 |
+
model_output = model(**encoded_input)
|
66 |
+
|
67 |
+
# Perform pooling. In this case, mean pooling.
|
68 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
+
|
70 |
+
print("Sentence embeddings:")
|
71 |
+
print(sentence_embeddings)
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
<!--- Describe how your model was evaluated -->
|
79 |
+
|
80 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
+
|
82 |
+
|
83 |
+
## Training
|
84 |
+
The model was trained with the parameters:
|
85 |
+
|
86 |
+
**DataLoader**:
|
87 |
+
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 788 with parameters:
|
89 |
+
```
|
90 |
+
{'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
+
```
|
92 |
+
|
93 |
+
**Loss**:
|
94 |
+
|
95 |
+
`__main__.LoggingCosineSimilarityLoss`
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 1,
|
101 |
+
"evaluation_steps": 0,
|
102 |
+
"evaluator": "NoneType",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 5e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 200,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/omarelsayeed_QA_Search/",
|
3 |
+
"_num_labels": 2,
|
4 |
+
"architectures": [
|
5 |
+
"BertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 256,
|
13 |
+
"id2label": {
|
14 |
+
"0": "\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
|
15 |
+
"1": "\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
|
16 |
+
"2": "\u0648\u0638\u064a\u0641\u0629",
|
17 |
+
"3": "\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631",
|
18 |
+
"4": "\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629",
|
19 |
+
"5": "\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629",
|
20 |
+
"6": "\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a",
|
21 |
+
"7": "\u062d\u0630\u0641 \u0643\u0627\u0631\u062a",
|
22 |
+
"8": "\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d",
|
23 |
+
"9": "\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629",
|
24 |
+
"10": "\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f",
|
25 |
+
"11": "\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628",
|
26 |
+
"12": "\u062d\u0630\u0641 \u062d\u0633\u0627\u0628",
|
27 |
+
"13": "\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631",
|
28 |
+
"14": "\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628",
|
29 |
+
"15": "\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629",
|
30 |
+
"16": "\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a",
|
31 |
+
"17": "\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647",
|
32 |
+
"18": "\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a",
|
33 |
+
"19": "\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629",
|
34 |
+
"20": "\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
|
35 |
+
"21": "\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
|
36 |
+
"22": "\u0645\u064a\u0627\u0647",
|
37 |
+
"23": "\u063a\u0627\u0632",
|
38 |
+
"24": "\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
|
39 |
+
"25": "\u0641\u0648\u0631\u064a \u0628\u0627\u064a",
|
40 |
+
"26": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
|
41 |
+
"27": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647",
|
42 |
+
"28": "\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642",
|
43 |
+
"29": "\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629",
|
44 |
+
"30": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629",
|
45 |
+
"31": "\u062a\u0630\u0627\u0643\u0631",
|
46 |
+
"32": "\u0627\u0644\u062a\u0623\u0645\u064a\u0646",
|
47 |
+
"33": "\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a",
|
48 |
+
"34": "\u062a\u0639\u0644\u064a\u0645",
|
49 |
+
"35": "\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621",
|
50 |
+
"36": "\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
|
51 |
+
"37": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643",
|
52 |
+
"38": "\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631",
|
53 |
+
"39": "\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
|
54 |
+
"40": "\u062a\u0628\u0631\u0639\u0627\u062a",
|
55 |
+
"41": "\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a",
|
56 |
+
"42": "Yellow Card",
|
57 |
+
"43": "\u062c\u0648\u0627\u0626\u0632",
|
58 |
+
"44": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632",
|
59 |
+
"45": "\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a",
|
60 |
+
"46": "\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a",
|
61 |
+
"47": "\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637",
|
62 |
+
"48": "\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a",
|
63 |
+
"49": "\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a",
|
64 |
+
"50": "\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a",
|
65 |
+
"51": "\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629",
|
66 |
+
"52": "\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a",
|
67 |
+
"53": "\u0627\u064a\u062f\u0627\u0639",
|
68 |
+
"54": "Consumer Finance",
|
69 |
+
"55": "\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629",
|
70 |
+
"56": "\u0633\u062d\u0628",
|
71 |
+
"57": "\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644"
|
72 |
+
},
|
73 |
+
"initializer_range": 0.02,
|
74 |
+
"intermediate_size": 1024,
|
75 |
+
"label2id": {
|
76 |
+
"Consumer Finance": 54,
|
77 |
+
"Yellow Card": 42,
|
78 |
+
"\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629": 29,
|
79 |
+
"\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a": 16,
|
80 |
+
"\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629": 4,
|
81 |
+
"\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a": 41,
|
82 |
+
"\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a": 6,
|
83 |
+
"\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a": 45,
|
84 |
+
"\u0627\u0644\u062a\u0623\u0645\u064a\u0646": 32,
|
85 |
+
"\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a": 46,
|
86 |
+
"\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 36,
|
87 |
+
"\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 24,
|
88 |
+
"\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a": 33,
|
89 |
+
"\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 0,
|
90 |
+
"\u0627\u064a\u062f\u0627\u0639": 53,
|
91 |
+
"\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629": 9,
|
92 |
+
"\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a": 52,
|
93 |
+
"\u062a\u0628\u0631\u0639\u0627\u062a": 40,
|
94 |
+
"\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629": 5,
|
95 |
+
"\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628": 14,
|
96 |
+
"\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a": 18,
|
97 |
+
"\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d": 8,
|
98 |
+
"\u062a\u0630\u0627\u0643\u0631": 31,
|
99 |
+
"\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629": 55,
|
100 |
+
"\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628": 11,
|
101 |
+
"\u062a\u0639\u0644\u064a\u0645": 34,
|
102 |
+
"\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a": 49,
|
103 |
+
"\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631": 38,
|
104 |
+
"\u062c\u0648\u0627\u0626\u0632": 43,
|
105 |
+
"\u062d\u0630\u0641 \u062d\u0633\u0627\u0628": 12,
|
106 |
+
"\u062d\u0630\u0641 \u0643\u0627\u0631\u062a": 7,
|
107 |
+
"\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f": 10,
|
108 |
+
"\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631": 13,
|
109 |
+
"\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629": 19,
|
110 |
+
"\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621": 35,
|
111 |
+
"\u0633\u062d\u0628": 56,
|
112 |
+
"\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a": 50,
|
113 |
+
"\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 20,
|
114 |
+
"\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632": 44,
|
115 |
+
"\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 26,
|
116 |
+
"\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647": 27,
|
117 |
+
"\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647": 17,
|
118 |
+
"\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644": 57,
|
119 |
+
"\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629": 15,
|
120 |
+
"\u063a\u0627\u0632": 23,
|
121 |
+
"\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 21,
|
122 |
+
"\u0641\u0648\u0631\u064a \u0628\u0627\u064a": 25,
|
123 |
+
"\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637": 47,
|
124 |
+
"\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629": 51,
|
125 |
+
"\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a": 48,
|
126 |
+
"\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631": 3,
|
127 |
+
"\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 39,
|
128 |
+
"\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642": 28,
|
129 |
+
"\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629": 30,
|
130 |
+
"\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643": 37,
|
131 |
+
"\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 1,
|
132 |
+
"\u0645\u064a\u0627\u0647": 22,
|
133 |
+
"\u0648\u0638\u064a\u0641\u0629": 2
|
134 |
+
},
|
135 |
+
"layer_norm_eps": 1e-12,
|
136 |
+
"max_position_embeddings": 512,
|
137 |
+
"model_type": "bert",
|
138 |
+
"num_attention_heads": 4,
|
139 |
+
"num_hidden_layers": 4,
|
140 |
+
"output_past": true,
|
141 |
+
"pad_token_id": 0,
|
142 |
+
"position_embedding_type": "absolute",
|
143 |
+
"problem_type": "single_label_classification",
|
144 |
+
"torch_dtype": "float32",
|
145 |
+
"transformers_version": "4.30.2",
|
146 |
+
"type_vocab_size": 2,
|
147 |
+
"use_cache": true,
|
148 |
+
"vocab_size": 32000
|
149 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.33.0",
|
5 |
+
"pytorch": "2.0.0"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f601e56d02f6b95863ee9b870a7926fc47bf284c9db41550bf117eb447a58f5
|
3 |
+
size 46223689
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 150,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|