omarelsayeed commited on
Commit
d5244f8
·
1 Parent(s): fc96521

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 256,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
+
52
+
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
+
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
+
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
+
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
+
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
+
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 788 with parameters:
89
+ ```
90
+ {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `__main__.LoggingCosineSimilarityLoss`
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 1,
101
+ "evaluation_steps": 0,
102
+ "evaluator": "NoneType",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 5e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": null,
110
+ "warmup_steps": 200,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
+
126
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/omarelsayeed_QA_Search/",
3
+ "_num_labels": 2,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 256,
13
+ "id2label": {
14
+ "0": "\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
15
+ "1": "\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a",
16
+ "2": "\u0648\u0638\u064a\u0641\u0629",
17
+ "3": "\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631",
18
+ "4": "\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629",
19
+ "5": "\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629",
20
+ "6": "\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a",
21
+ "7": "\u062d\u0630\u0641 \u0643\u0627\u0631\u062a",
22
+ "8": "\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d",
23
+ "9": "\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629",
24
+ "10": "\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f",
25
+ "11": "\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628",
26
+ "12": "\u062d\u0630\u0641 \u062d\u0633\u0627\u0628",
27
+ "13": "\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631",
28
+ "14": "\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628",
29
+ "15": "\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629",
30
+ "16": "\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a",
31
+ "17": "\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647",
32
+ "18": "\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a",
33
+ "19": "\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629",
34
+ "20": "\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
35
+ "21": "\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644",
36
+ "22": "\u0645\u064a\u0627\u0647",
37
+ "23": "\u063a\u0627\u0632",
38
+ "24": "\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
39
+ "25": "\u0641\u0648\u0631\u064a \u0628\u0627\u064a",
40
+ "26": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621",
41
+ "27": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647",
42
+ "28": "\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642",
43
+ "29": "\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629",
44
+ "30": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629",
45
+ "31": "\u062a\u0630\u0627\u0643\u0631",
46
+ "32": "\u0627\u0644\u062a\u0623\u0645\u064a\u0646",
47
+ "33": "\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a",
48
+ "34": "\u062a\u0639\u0644\u064a\u0645",
49
+ "35": "\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621",
50
+ "36": "\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
51
+ "37": "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643",
52
+ "38": "\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631",
53
+ "39": "\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646",
54
+ "40": "\u062a\u0628\u0631\u0639\u0627\u062a",
55
+ "41": "\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a",
56
+ "42": "Yellow Card",
57
+ "43": "\u062c\u0648\u0627\u0626\u0632",
58
+ "44": "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632",
59
+ "45": "\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a",
60
+ "46": "\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a",
61
+ "47": "\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637",
62
+ "48": "\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a",
63
+ "49": "\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a",
64
+ "50": "\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a",
65
+ "51": "\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629",
66
+ "52": "\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a",
67
+ "53": "\u0627\u064a\u062f\u0627\u0639",
68
+ "54": "Consumer Finance",
69
+ "55": "\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629",
70
+ "56": "\u0633\u062d\u0628",
71
+ "57": "\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644"
72
+ },
73
+ "initializer_range": 0.02,
74
+ "intermediate_size": 1024,
75
+ "label2id": {
76
+ "Consumer Finance": 54,
77
+ "Yellow Card": 42,
78
+ "\u0627\u0633\u062a\u0631\u0627\u062c\u0639 \u0642\u064a\u0645\u0629 \u0645\u0627\u0644\u064a\u0629": 29,
79
+ "\u0627\u0633\u062a\u0641\u0633\u0627\u0631 \u0639\u0646 \u062d\u0627\u0644\u0629 \u0627\u0644\u0639\u0645\u0644\u064a\u0629/\u0627\u0644\u0639\u0645\u0644\u064a\u0629 \u0627\u062a\u062e\u0635\u0645\u062a": 16,
80
+ "\u0627\u0633\u062a\u0644\u0627\u0645 \u0627\u0644\u0631\u062e\u0635\u0629": 4,
81
+ "\u0627\u0634\u062a\u0631\u0627\u0643 \u0646\u0648\u0627\u062f\u064a": 41,
82
+ "\u0627\u0636\u0627\u0641\u0647 \u0643\u0627\u0631\u062a": 6,
83
+ "\u0627\u0644\u0627\u0646\u062a\u0631\u0646\u062a \u0627\u0644\u0645\u0646\u0632\u0644\u064a": 45,
84
+ "\u0627\u0644\u062a\u0623\u0645\u064a\u0646": 32,
85
+ "\u0627\u0644\u062a\u0644\u064a\u0641\u0648\u0646 \u0627\u0644\u0623\u0631\u0636\u064a": 46,
86
+ "\u0627\u0644\u0639\u0627\u0628 \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 36,
87
+ "\u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 24,
88
+ "\u0627\u0644\u0646\u0642\u0627\u0628\u0627\u062a": 33,
89
+ "\u0627\u0645\u0627\u0643\u0646 \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 0,
90
+ "\u0627\u064a\u062f\u0627\u0639": 53,
91
+ "\u0628\u0637\u0627\u0642\u0647 \u0645\u0639\u0644\u0642\u0629/\u0627\u0644\u0628\u0637\u0627\u0642\u0629 \u0645\u062d\u0638\u0648\u0631\u0629": 9,
92
+ "\u062a\u0623\u0645\u064a\u0646 \u0627\u062c\u062a\u0645\u0627\u0639\u064a": 52,
93
+ "\u062a\u0628\u0631\u0639\u0627\u062a": 40,
94
+ "\u062a\u062c\u062f\u064a\u062f \u0627\u0644\u0631\u062e\u0635\u0629": 5,
95
+ "\u062a\u062d\u062f\u064a\u062b \u062d\u0633\u0627\u0628": 14,
96
+ "\u062a\u062d\u0648\u064a\u0644 \u0645\u0628\u0644\u063a \u0645\u0627\u0644\u064a": 18,
97
+ "\u062a\u062e\u0637\u0649 \u062d\u062f \u0645\u0633\u0645\u0648\u062d": 8,
98
+ "\u062a\u0630\u0627\u0643\u0631": 31,
99
+ "\u062a\u0633\u062c\u064a\u0644 \u0627\u0644\u0648\u062d\u062f\u0627\u062a \u0627\u0644\u0639\u0642\u0627\u0631\u064a\u0629": 55,
100
+ "\u062a\u0633\u062c\u064a\u0644 \u062f\u062e\u0648\u0644 \u062d\u0633\u0627\u0628": 11,
101
+ "\u062a\u0639\u0644\u064a\u0645": 34,
102
+ "\u062a\u0642\u062f\u064a\u0645 \u0634\u0643\u0648\u064a": 49,
103
+ "\u062a\u0645\u0648\u064a\u0644 \u0645\u062a\u0646\u0627\u0647\u064a \u0627\u0644\u0635\u063a\u0631": 38,
104
+ "\u062c\u0648\u0627\u0626\u0632": 43,
105
+ "\u062d\u0630\u0641 \u062d\u0633\u0627\u0628": 12,
106
+ "\u062d\u0630\u0641 \u0643\u0627\u0631\u062a": 7,
107
+ "\u062d\u0633\u0627\u0628 \u062c\u062f\u064a\u062f": 10,
108
+ "\u062d\u0633\u0627\u0628 \u0645\u062d\u0638\u0648\u0631": 13,
109
+ "\u062e\u062f\u0645\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u062a \u0627\u0644\u0645\u0633\u0644\u062d\u0629": 19,
110
+ "\u062e\u062f\u0645\u0629 \u0627\u0644\u0639\u0645\u0644\u0627\u0621": 35,
111
+ "\u0633\u062d\u0628": 56,
112
+ "\u0633\u0643\u0646 \u0648\u0639\u0642\u0627\u0631\u0627\u062a": 50,
113
+ "\u0634\u062d\u0646 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 20,
114
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u063a\u0627\u0632": 44,
115
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0621": 26,
116
+ "\u0634\u062d\u0646 \u0643\u0627\u0631\u062a \u0627\u0644\u0645\u064a\u0627\u0647": 27,
117
+ "\u0634\u0631\u0627\u0621 \u0645\u0627\u0643\u064a\u0646\u0647": 17,
118
+ "\u0634\u0631\u0627\u0621 \u0645\u0646 \u0645\u062d\u0644": 57,
119
+ "\u0637\u0628\u0627\u0639\u0647 \u0641\u0627\u062a\u0648\u0631\u0629": 15,
120
+ "\u063a\u0627\u0632": 23,
121
+ "\u0641\u0627\u062a\u0648\u0631\u0629 \u0627\u0644\u0645\u0648\u0628\u0627\u064a\u0644": 21,
122
+ "\u0641\u0648\u0631\u064a \u0628\u0627\u064a": 25,
123
+ "\u0641\u0648\u0631\u064a \u062a\u0642\u0633\u064a\u0637": 47,
124
+ "\u0641\u0648\u0631\u064a \u0644\u0644\u0648\u0633\u0627\u0637\u0629 \u0627\u0644\u062a\u0623\u0645\u064a\u0646\u064a\u0629": 51,
125
+ "\u0641\u0648\u0631\u064a \u064a\u0648\u0645\u064a": 48,
126
+ "\u0645\u062e\u0627\u0644\u0641\u0627\u062a \u0627\u0644\u0645\u0631\u0648\u0631": 3,
127
+ "\u0645\u062f\u0641\u0648\u0639\u0627\u062a \u0627\u0648\u0646\u0644\u0627\u064a\u0646": 39,
128
+ "\u0645\u0634\u0643\u0644\u0629 \u0641\u064a \u0627\u0644\u062a\u0637\u0628\u064a\u0642": 28,
129
+ "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u062f\u0648\u0644\u064a\u0629": 30,
130
+ "\u0645\u0639\u0627\u0645\u0644\u0627\u062a \u0645\u0627\u0644\u064a\u0629 \u0648 \u0628\u0646\u0648\u0643": 37,
131
+ "\u0645\u0648\u0627\u0639\u064a\u062f \u0641\u0631\u0648\u0639 \u0641\u0648\u0631\u064a": 1,
132
+ "\u0645\u064a\u0627\u0647": 22,
133
+ "\u0648\u0638\u064a\u0641\u0629": 2
134
+ },
135
+ "layer_norm_eps": 1e-12,
136
+ "max_position_embeddings": 512,
137
+ "model_type": "bert",
138
+ "num_attention_heads": 4,
139
+ "num_hidden_layers": 4,
140
+ "output_past": true,
141
+ "pad_token_id": 0,
142
+ "position_embedding_type": "absolute",
143
+ "problem_type": "single_label_classification",
144
+ "torch_dtype": "float32",
145
+ "transformers_version": "4.30.2",
146
+ "type_vocab_size": 2,
147
+ "use_cache": true,
148
+ "vocab_size": 32000
149
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.0.0"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f601e56d02f6b95863ee9b870a7926fc47bf284c9db41550bf117eb447a58f5
3
+ size 46223689
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 150,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff