|
|
|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import pickle |
|
|
|
def main(): |
|
pickle_in = open('RandomForrestClassifier_df1x.pkl', 'rb') |
|
classifier = pickle.load(pickle_in) |
|
|
|
columns = ["V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", |
|
"V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", |
|
"V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28", "Amount"] |
|
|
|
st.title('Fraud Detector') |
|
for i in columns: |
|
i = st.number_input("Please input the "+i+" value here.") |
|
submit = st.button('Calculate') |
|
|
|
input = [[V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, |
|
V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, |
|
V21, V22, V23, V24, V25, V26, V27, V28, Amount]] |
|
|
|
input_df = pd.DataFrame(input, columns=columns) |
|
|
|
prediction = classifier.predict(input_df) |
|
|
|
|
|
if prediction == 1: |
|
st.write("The transaction is fraudulant.") |
|
|
|
else: |
|
st.write("The transaction is normal.") |
|
|
|
main() |