oliverguhr commited on
Commit
ea81c28
1 Parent(s): 85c6f34

removed readme

Browse files
Files changed (2) hide show
  1. README copy.md +0 -116
  2. README.md +0 -142
README copy.md DELETED
@@ -1,116 +0,0 @@
1
- ---
2
- language:
3
- - de
4
- license: apache-2.0
5
- tags:
6
- - automatic-speech-recognition
7
- - mozilla-foundation/common_voice_9_0
8
- - generated_from_trainer
9
- datasets:
10
- - common_voice
11
- model-index:
12
- - name: wav2vec2-base-german-cv9
13
- results: []
14
- ---
15
-
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # wav2vec2-base-german-cv9
20
-
21
- This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.1742
24
- - Wer: 0.1209
25
-
26
- ## Model description
27
-
28
- More information needed
29
-
30
- ## Intended uses & limitations
31
-
32
- More information needed
33
-
34
- ## Training and evaluation data
35
-
36
- More information needed
37
-
38
- ## Training procedure
39
-
40
- ### Training hyperparameters
41
-
42
- The following hyperparameters were used during training:
43
- - learning_rate: 0.0001
44
- - train_batch_size: 16
45
- - eval_batch_size: 32
46
- - seed: 42
47
- - gradient_accumulation_steps: 8
48
- - total_train_batch_size: 128
49
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
- - lr_scheduler_type: linear
51
- - lr_scheduler_warmup_ratio: 0.1
52
- - num_epochs: 50.0
53
- - mixed_precision_training: Native AMP
54
-
55
- ### Training results
56
-
57
- | Training Loss | Epoch | Step | Validation Loss | Wer |
58
- |:-------------:|:-----:|:------:|:---------------:|:------:|
59
- | 0.6827 | 1.0 | 3557 | 0.6695 | 0.6247 |
60
- | 0.3992 | 2.0 | 7114 | 0.3738 | 0.3936 |
61
- | 0.2611 | 3.0 | 10671 | 0.3011 | 0.3177 |
62
- | 0.2536 | 4.0 | 14228 | 0.2672 | 0.2749 |
63
- | 0.1943 | 5.0 | 17785 | 0.2487 | 0.2480 |
64
- | 0.2004 | 6.0 | 21342 | 0.2246 | 0.2268 |
65
- | 0.1605 | 7.0 | 24899 | 0.2176 | 0.2120 |
66
- | 0.1579 | 8.0 | 28456 | 0.2046 | 0.2024 |
67
- | 0.1668 | 9.0 | 32013 | 0.2027 | 0.1944 |
68
- | 0.1338 | 10.0 | 35570 | 0.1968 | 0.1854 |
69
- | 0.1478 | 11.0 | 39127 | 0.1963 | 0.1823 |
70
- | 0.1177 | 12.0 | 42684 | 0.1956 | 0.1800 |
71
- | 0.1245 | 13.0 | 46241 | 0.1889 | 0.1732 |
72
- | 0.1124 | 14.0 | 49798 | 0.1868 | 0.1714 |
73
- | 0.1112 | 15.0 | 53355 | 0.1805 | 0.1650 |
74
- | 0.1209 | 16.0 | 56912 | 0.1860 | 0.1614 |
75
- | 0.1002 | 17.0 | 60469 | 0.1828 | 0.1604 |
76
- | 0.118 | 18.0 | 64026 | 0.1832 | 0.1580 |
77
- | 0.0974 | 19.0 | 67583 | 0.1771 | 0.1555 |
78
- | 0.1007 | 20.0 | 71140 | 0.1812 | 0.1532 |
79
- | 0.0866 | 21.0 | 74697 | 0.1752 | 0.1504 |
80
- | 0.0901 | 22.0 | 78254 | 0.1690 | 0.1477 |
81
- | 0.0964 | 23.0 | 81811 | 0.1773 | 0.1489 |
82
- | 0.085 | 24.0 | 85368 | 0.1776 | 0.1456 |
83
- | 0.0945 | 25.0 | 88925 | 0.1786 | 0.1428 |
84
- | 0.0804 | 26.0 | 92482 | 0.1737 | 0.1429 |
85
- | 0.0832 | 27.0 | 96039 | 0.1789 | 0.1394 |
86
- | 0.0683 | 28.0 | 99596 | 0.1741 | 0.1390 |
87
- | 0.0761 | 29.0 | 103153 | 0.1688 | 0.1379 |
88
- | 0.0833 | 30.0 | 106710 | 0.1726 | 0.1370 |
89
- | 0.0753 | 31.0 | 110267 | 0.1774 | 0.1353 |
90
- | 0.08 | 32.0 | 113824 | 0.1734 | 0.1344 |
91
- | 0.0644 | 33.0 | 117381 | 0.1737 | 0.1334 |
92
- | 0.0745 | 34.0 | 120938 | 0.1763 | 0.1335 |
93
- | 0.0629 | 35.0 | 124495 | 0.1761 | 0.1311 |
94
- | 0.0654 | 36.0 | 128052 | 0.1718 | 0.1302 |
95
- | 0.0656 | 37.0 | 131609 | 0.1697 | 0.1301 |
96
- | 0.0643 | 38.0 | 135166 | 0.1716 | 0.1279 |
97
- | 0.0683 | 39.0 | 138723 | 0.1777 | 0.1279 |
98
- | 0.0587 | 40.0 | 142280 | 0.1735 | 0.1271 |
99
- | 0.0693 | 41.0 | 145837 | 0.1780 | 0.1260 |
100
- | 0.0532 | 42.0 | 149394 | 0.1724 | 0.1245 |
101
- | 0.0594 | 43.0 | 152951 | 0.1736 | 0.1250 |
102
- | 0.0544 | 44.0 | 156508 | 0.1744 | 0.1238 |
103
- | 0.0559 | 45.0 | 160065 | 0.1770 | 0.1232 |
104
- | 0.0557 | 46.0 | 163622 | 0.1766 | 0.1231 |
105
- | 0.0521 | 47.0 | 167179 | 0.1751 | 0.1220 |
106
- | 0.0591 | 48.0 | 170736 | 0.1724 | 0.1217 |
107
- | 0.0507 | 49.0 | 174293 | 0.1753 | 0.1212 |
108
- | 0.0577 | 50.0 | 177850 | 0.1742 | 0.1209 |
109
-
110
-
111
- ### Framework versions
112
-
113
- - Transformers 4.20.1
114
- - Pytorch 1.11.0+cu113
115
- - Datasets 2.0.0
116
- - Tokenizers 0.11.6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,142 +0,0 @@
1
- ---
2
- language:
3
- - de
4
- license: MIT
5
- tags:
6
- - automatic-speech-recognition
7
- - mozilla-foundation/common_voice_9_0
8
- - generated_from_trainer
9
- datasets:
10
- - mozilla-foundation/common_voice_9_0
11
- model-index:
12
- - name: wav2vec2-base-german-cv9
13
- results:
14
- - task:
15
- name: Automatic Speech Recognition
16
- type: automatic-speech-recognition
17
- dataset:
18
- name: Common Voice 6.1
19
- type: common_voice
20
- args: de
21
- metrics:
22
- - name: Test WER
23
- type: wer
24
- value: 10.565782902002716
25
- - name: Test CER
26
- type: cer
27
- value: 2.6226824852959657
28
- - task:
29
- name: Automatic Speech Recognition
30
- type: automatic-speech-recognition
31
- dataset:
32
- name: Common Voice 6.1
33
- type: common_voice
34
- args: de
35
- metrics:
36
- - name: Test WER (+LM)
37
- type: wer
38
- value: 7.996088831362508
39
- - name: Test CER (+LM)
40
- type: cer
41
- value: 2.1515717711623326
42
- ---
43
-
44
-
45
- # wav2vec2-base-german-cv9
46
-
47
- This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset.
48
- It achieves the following results on the evaluation set:
49
- - Loss: 0.1742
50
- - Wer: 0.1209
51
-
52
- ## Model description
53
-
54
- More information needed
55
-
56
- ## Intended uses & limitations
57
-
58
- More information needed
59
-
60
- ## Training and evaluation data
61
-
62
- More information needed
63
-
64
- ## Training procedure
65
-
66
- ### Training hyperparameters
67
-
68
- The following hyperparameters were used during training:
69
- - learning_rate: 0.0001
70
- - train_batch_size: 16
71
- - eval_batch_size: 32
72
- - seed: 42
73
- - gradient_accumulation_steps: 8
74
- - total_train_batch_size: 128
75
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
- - lr_scheduler_type: linear
77
- - lr_scheduler_warmup_ratio: 0.1
78
- - num_epochs: 50.0
79
- - mixed_precision_training: Native AMP
80
-
81
- ### Training results
82
-
83
- | Training Loss | Epoch | Step | Validation Loss | Wer |
84
- |:-------------:|:-----:|:------:|:---------------:|:------:|
85
- | 0.6827 | 1.0 | 3557 | 0.6695 | 0.6247 |
86
- | 0.3992 | 2.0 | 7114 | 0.3738 | 0.3936 |
87
- | 0.2611 | 3.0 | 10671 | 0.3011 | 0.3177 |
88
- | 0.2536 | 4.0 | 14228 | 0.2672 | 0.2749 |
89
- | 0.1943 | 5.0 | 17785 | 0.2487 | 0.2480 |
90
- | 0.2004 | 6.0 | 21342 | 0.2246 | 0.2268 |
91
- | 0.1605 | 7.0 | 24899 | 0.2176 | 0.2120 |
92
- | 0.1579 | 8.0 | 28456 | 0.2046 | 0.2024 |
93
- | 0.1668 | 9.0 | 32013 | 0.2027 | 0.1944 |
94
- | 0.1338 | 10.0 | 35570 | 0.1968 | 0.1854 |
95
- | 0.1478 | 11.0 | 39127 | 0.1963 | 0.1823 |
96
- | 0.1177 | 12.0 | 42684 | 0.1956 | 0.1800 |
97
- | 0.1245 | 13.0 | 46241 | 0.1889 | 0.1732 |
98
- | 0.1124 | 14.0 | 49798 | 0.1868 | 0.1714 |
99
- | 0.1112 | 15.0 | 53355 | 0.1805 | 0.1650 |
100
- | 0.1209 | 16.0 | 56912 | 0.1860 | 0.1614 |
101
- | 0.1002 | 17.0 | 60469 | 0.1828 | 0.1604 |
102
- | 0.118 | 18.0 | 64026 | 0.1832 | 0.1580 |
103
- | 0.0974 | 19.0 | 67583 | 0.1771 | 0.1555 |
104
- | 0.1007 | 20.0 | 71140 | 0.1812 | 0.1532 |
105
- | 0.0866 | 21.0 | 74697 | 0.1752 | 0.1504 |
106
- | 0.0901 | 22.0 | 78254 | 0.1690 | 0.1477 |
107
- | 0.0964 | 23.0 | 81811 | 0.1773 | 0.1489 |
108
- | 0.085 | 24.0 | 85368 | 0.1776 | 0.1456 |
109
- | 0.0945 | 25.0 | 88925 | 0.1786 | 0.1428 |
110
- | 0.0804 | 26.0 | 92482 | 0.1737 | 0.1429 |
111
- | 0.0832 | 27.0 | 96039 | 0.1789 | 0.1394 |
112
- | 0.0683 | 28.0 | 99596 | 0.1741 | 0.1390 |
113
- | 0.0761 | 29.0 | 103153 | 0.1688 | 0.1379 |
114
- | 0.0833 | 30.0 | 106710 | 0.1726 | 0.1370 |
115
- | 0.0753 | 31.0 | 110267 | 0.1774 | 0.1353 |
116
- | 0.08 | 32.0 | 113824 | 0.1734 | 0.1344 |
117
- | 0.0644 | 33.0 | 117381 | 0.1737 | 0.1334 |
118
- | 0.0745 | 34.0 | 120938 | 0.1763 | 0.1335 |
119
- | 0.0629 | 35.0 | 124495 | 0.1761 | 0.1311 |
120
- | 0.0654 | 36.0 | 128052 | 0.1718 | 0.1302 |
121
- | 0.0656 | 37.0 | 131609 | 0.1697 | 0.1301 |
122
- | 0.0643 | 38.0 | 135166 | 0.1716 | 0.1279 |
123
- | 0.0683 | 39.0 | 138723 | 0.1777 | 0.1279 |
124
- | 0.0587 | 40.0 | 142280 | 0.1735 | 0.1271 |
125
- | 0.0693 | 41.0 | 145837 | 0.1780 | 0.1260 |
126
- | 0.0532 | 42.0 | 149394 | 0.1724 | 0.1245 |
127
- | 0.0594 | 43.0 | 152951 | 0.1736 | 0.1250 |
128
- | 0.0544 | 44.0 | 156508 | 0.1744 | 0.1238 |
129
- | 0.0559 | 45.0 | 160065 | 0.1770 | 0.1232 |
130
- | 0.0557 | 46.0 | 163622 | 0.1766 | 0.1231 |
131
- | 0.0521 | 47.0 | 167179 | 0.1751 | 0.1220 |
132
- | 0.0591 | 48.0 | 170736 | 0.1724 | 0.1217 |
133
- | 0.0507 | 49.0 | 174293 | 0.1753 | 0.1212 |
134
- | 0.0577 | 50.0 | 177850 | 0.1742 | 0.1209 |
135
-
136
-
137
- ### Framework versions
138
-
139
- - Transformers 4.20.1
140
- - Pytorch 1.11.0+cu113
141
- - Datasets 2.0.0
142
- - Tokenizers 0.11.6