ogabrielluiz's picture
First upload to the hub
32ccba7
raw
history blame
14.7 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb7ef6158c0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb7ef615950>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb7ef6159e0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb7ef615a70>",
"_build": "<function ActorCriticPolicy._build at 0x7fb7ef615b00>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb7ef615b90>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb7ef615c20>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb7ef615cb0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb7ef615d40>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb7ef615dd0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb7ef615e60>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fb7ef5f0060>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652235015.829387,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbMtr2Jnw8+tVRmPS3dRb78hoM9r5s8PQAAAAAAAAAAmjSgvLiGtrnlJ6o7s4tjNqBonjlRscW6AACAPwAAgD+AHFs+rAa4PBYtHLuatK25UCVNPgZPTjoAAIA/AACAP9rTvj1ceTE/FBkdPgX7yL7BP428aqQNPQAAAAAAAAAAwHunvSm8frqVbyC8n+ndNjsgF7veWUa2AACAPwAAgD8A8mc9H33puSgF0DpeaUc1M4umujoC77kAAIA/AACAP/PtQT4UlaM7xl+BO01bDTmKjkI93ZpXugAAgD8AAIA/E8URPtcDVLkDsFi8sDxiufNrwDtIAku6AACAPwAAgD+AG04+rEq2PBofFDu+I6A5zihIPv5pSboAAIA/AACAPybD2z32XFi6Z4SRu4L7P7Z4aF06CwSmOgAAgD8AAIA/AEiPPcOhCbotdAO8UOzwNWSsObuTIV61AACAPwAAgD8AwqI+KdtGO+uC0Dqlpa03ypiYPNs+8LkAAIA/AACAPwZxVz49Kgm76spTuiNJSDa+W7+7nqJ0OQAAgD8AAIA/61gVP0mPeD32LRm7MXJouVfKET7+j+g4AACAPwAAgD+z1Yg+GrlovYCiEDzSz866uhrGvk74j7sAAIA/AACAP5pCB70piFW6wp1uO957xbR0KUO4mLSHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuRluwGfIbMCUhpRSlIwBbJRNegKMAXSUR0CAkxJnQID6dX2UKGgGaAloD0MIpz0l50SjYUCUhpRSlGgVTegDaBZHQICUIjdHlOp1fZQoaAZoCWgPQwiaeXJNgVRDQJSGlFKUaBVN6ANoFkdAgJbs1jy4F3V9lChoBmgJaA9DCEkvaverDDJAlIaUUpRoFUvOaBZHQICdFJ6IFeR1fZQoaAZoCWgPQwhB2ClWDS5RQJSGlFKUaBVN6ANoFkdAgL2owmE5AHV9lChoBmgJaA9DCD3WjAxyRxVAlIaUUpRoFU3oA2gWR0CAwSPJ7sv7dX2UKGgGaAloD0MI6Xx4liA3TUCUhpRSlGgVTegDaBZHQIDJiW1MM7V1fZQoaAZoCWgPQwhCQL6Eij5gQJSGlFKUaBVN6ANoFkdAgM123rleW3V9lChoBmgJaA9DCGRbBpyl6VxAlIaUUpRoFU3oA2gWR0CA4GE+PikwdX2UKGgGaAloD0MIIv32deDcFcCUhpRSlGgVTQUBaBZHQIDg8Rcu8K51fZQoaAZoCWgPQwhAMbJkjuXjP5SGlFKUaBVLymgWR0CA6FUFSsKcdX2UKGgGaAloD0MImZ1F71QtV0CUhpRSlGgVTegDaBZHQIDv8nqmj0t1fZQoaAZoCWgPQwj4pumzA9xHQJSGlFKUaBVN6ANoFkdAgPir4WUKRnV9lChoBmgJaA9DCEFEatrFzGVAlIaUUpRoFU3oA2gWR0CA+/L6DXe4dX2UKGgGaAloD0MIumbyzTa/WUCUhpRSlGgVTegDaBZHQIEEaAWi1zB1fZQoaAZoCWgPQwifHAWIggkYQJSGlFKUaBVLy2gWR0CBBGzUI9kjdX2UKGgGaAloD0MIIoleRrF/Y0CUhpRSlGgVTegDaBZHQIEHxb6guh91fZQoaAZoCWgPQwhpyeNp+WVdQJSGlFKUaBVN6ANoFkdAgTLYFA3T/nV9lChoBmgJaA9DCEq05PG0UllAlIaUUpRoFU3oA2gWR0CBNO5Xlr/LdX2UKGgGaAloD0MIDXGsi9tOW0CUhpRSlGgVTegDaBZHQIE4T39JjDt1fZQoaAZoCWgPQwgKn62Dg+teQJSGlFKUaBVN6ANoFkdAgTlSofjjrHV9lChoBmgJaA9DCA3+fjFbWilAlIaUUpRoFUvMaBZHQIE6bd+G47R1fZQoaAZoCWgPQwiJesGnOeVcQJSGlFKUaBVN6ANoFkdAgTwEVvddmnV9lChoBmgJaA9DCNrFNNO94mJAlIaUUpRoFU3oA2gWR0CBQeIeo1k2dX2UKGgGaAloD0MIWWyTikYaYkCUhpRSlGgVTegDaBZHQIFkMpPRArx1fZQoaAZoCWgPQwhxOPOrOddZQJSGlFKUaBVN6ANoFkdAgWxTQE6kqXV9lChoBmgJaA9DCFGHFW757lRAlIaUUpRoFU3oA2gWR0CBgoimEXchdX2UKGgGaAloD0MIjbW/s71zYkCUhpRSlGgVTegDaBZHQIGDD2tdRix1fZQoaAZoCWgPQwgkDtlAugVrQJSGlFKUaBVNMAJoFkdAgYg0iyIHknV9lChoBmgJaA9DCI9TdCSXHF5AlIaUUpRoFU3oA2gWR0CBkGd4mkWRdX2UKGgGaAloD0MIQ1a3ek7lXUCUhpRSlGgVTegDaBZHQIGX3/BFd9l1fZQoaAZoCWgPQwhPPj22ZZZjQJSGlFKUaBVN6ANoFkdAgaI+dTYNAnV9lChoBmgJaA9DCIidKXTeAmJAlIaUUpRoFU3oA2gWR0CBokFev6j4dX2UKGgGaAloD0MIGR2QhH2zKkCUhpRSlGgVTegDaBZHQIGlMzfrKNh1fZQoaAZoCWgPQwjWrDO+L9pPQJSGlFKUaBVN6ANoFkdAgapht1p0wXV9lChoBmgJaA9DCKwdxTlqoWZAlIaUUpRoFU3oA2gWR0CB0ablzU7TdX2UKGgGaAloD0MIUtMuphnWYUCUhpRSlGgVTegDaBZHQIHUuoP07Kd1fZQoaAZoCWgPQwjFWKZfIuNaQJSGlFKUaBVN6ANoFkdAgdXHb7CSBHV9lChoBmgJaA9DCMh8QKAzOl9AlIaUUpRoFU3oA2gWR0CB1up71Iy1dX2UKGgGaAloD0MIHeOKi6MSBUCUhpRSlGgVTegDaBZHQIHYiK+BYmt1fZQoaAZoCWgPQwioqWVrfRkzQJSGlFKUaBVL2mgWR0CB8EBFuvU0dX2UKGgGaAloD0MI7xtfe2ZLVECUhpRSlGgVTegDaBZHQIICcuUUwi91fZQoaAZoCWgPQwgxW7IqwithQJSGlFKUaBVN6ANoFkdAggsdEkSmInV9lChoBmgJaA9DCJXUCWgijDVAlIaUUpRoFUu+aBZHQIILJQcghbJ1fZQoaAZoCWgPQwjGv8+4cCDvv5SGlFKUaBVL02gWR0CCIDDNQj2SdX2UKGgGaAloD0MIFVRU/UofTUCUhpRSlGgVTegDaBZHQIIjjs8gZCR1fZQoaAZoCWgPQwgo8bkTbFFhQJSGlFKUaBVN6ANoFkdAgiQnEl3QlnV9lChoBmgJaA9DCI7myMov2WFAlIaUUpRoFU3oA2gWR0CCKXo7muDBdX2UKGgGaAloD0MIC170FaT2V0CUhpRSlGgVTegDaBZHQIIxvFcY64l1fZQoaAZoCWgPQwjTEcDN4pUqQJSGlFKUaBVLqmgWR0CCNfnA6+36dX2UKGgGaAloD0MI2o0+5oPqZECUhpRSlGgVTegDaBZHQII5YqLCN0h1fZQoaAZoCWgPQwj8icqGNZXhv5SGlFKUaBVLuGgWR0CCOw02LpA2dX2UKGgGaAloD0MI+oBAZ9JxX0CUhpRSlGgVTegDaBZHQIJEGws5GSZ1fZQoaAZoCWgPQwil8+FZggVjQJSGlFKUaBVN6ANoFkdAgkQa5oXbd3V9lChoBmgJaA9DCLNdoQ8WtmNAlIaUUpRoFU3oA2gWR0CCRv7el9BsdX2UKGgGaAloD0MIUirhCT1RZkCUhpRSlGgVTegDaBZHQIJL94FA3UB1fZQoaAZoCWgPQwiTG0XWmtRgQJSGlFKUaBVN6ANoFkdAgk2yIYWLxnV9lChoBmgJaA9DCBB5y9UPGWnAlIaUUpRoFU1mAWgWR0CCTlj9XLeRdX2UKGgGaAloD0MIgzC3e7msWkCUhpRSlGgVTegDaBZHQIJ1UyrPt2N1fZQoaAZoCWgPQwh7+DJRhBxcQJSGlFKUaBVN6ANoFkdAgnYmqYJE6XV9lChoBmgJaA9DCGak3lM5SVtAlIaUUpRoFU3oA2gWR0CCdwA3kxREdX2UKGgGaAloD0MIWI0lrI2TTcCUhpRSlGgVS/RoFkdAgoXkNFz+33V9lChoBmgJaA9DCMIv9fOmuirAlIaUUpRoFU0GAWgWR0CCjSznied1dX2UKGgGaAloD0MI9Z81P/6gYUCUhpRSlGgVTegDaBZHQIKktyo4uK51fZQoaAZoCWgPQwiT/l4KDytbQJSGlFKUaBVN6ANoFkdAgqS/642CNHV9lChoBmgJaA9DCC3Q7pDi8mVAlIaUUpRoFU04AmgWR0CCpQYqG1x9dX2UKGgGaAloD0MIT5FDxM1NNkCUhpRSlGgVS9poFkdAgqiOZb6gunV9lChoBmgJaA9DCI7O+SmOYxDAlIaUUpRoFUusaBZHQIK8m7jDKo11fZQoaAZoCWgPQwhSD9HoDjRTQJSGlFKUaBVN6ANoFkdAgr4u09hZyXV9lChoBmgJaA9DCNOlf0kqTF9AlIaUUpRoFU3oA2gWR0CCxgtCiRGMdX2UKGgGaAloD0MIECOERxsqWECUhpRSlGgVTegDaBZHQILJ3BN21Ul1fZQoaAZoCWgPQwjqkQa3tZFbQJSGlFKUaBVN6ANoFkdAgszCobXHznV9lChoBmgJaA9DCM3IIHcRallAlIaUUpRoFU3oA2gWR0CCzhYSQHRkdX2UKGgGaAloD0MIfNKJBFPVKsCUhpRSlGgVS61oFkdAgtETPrv9cnV9lChoBmgJaA9DCA/W/znMEVxAlIaUUpRoFU3oA2gWR0CC1WXm/336dX2UKGgGaAloD0MIcuDVcmfxXkCUhpRSlGgVTegDaBZHQILX7uWrwOR1fZQoaAZoCWgPQwgU6BN5kpg0QJSGlFKUaBVLx2gWR0CC3ba8Hv+gdX2UKGgGaAloD0MIjgbwFkjkWkCUhpRSlGgVTegDaBZHQILeJCY1He91fZQoaAZoCWgPQwiFC3kEtz5gQJSGlFKUaBVN6ANoFkdAgt7L9VFQVXV9lChoBmgJaA9DCP5itmRVFVxAlIaUUpRoFU3oA2gWR0CC4dwxWT5gdX2UKGgGaAloD0MIu5hmuldTZECUhpRSlGgVTegDaBZHQIMH9CkXUH91fZQoaAZoCWgPQwhpG3+isuEewJSGlFKUaBVL1WgWR0CDCmRGtp22dX2UKGgGaAloD0MIeR7cnbXTK8CUhpRSlGgVS7RoFkdAgw2XEqDsdHV9lChoBmgJaA9DCMkE/BpJYjDAlIaUUpRoFUu2aBZHQIMT2k8A7xN1fZQoaAZoCWgPQwiW58HdWadeQJSGlFKUaBVN6ANoFkdAgxmgP/aQFXV9lChoBmgJaA9DCCE82jhiU0DAlIaUUpRoFUvLaBZHQIMcZoRIz311fZQoaAZoCWgPQwh9dVWgFqspwJSGlFKUaBVL62gWR0CDHoCnxaxHdX2UKGgGaAloD0MIDK8kea7fM0CUhpRSlGgVS+FoFkdAgyyeOXE61nV9lChoBmgJaA9DCIl+bf30OzBAlIaUUpRoFUvLaBZHQIMv52B8QZp1fZQoaAZoCWgPQwjp0VRP5p8EQJSGlFKUaBVLvmgWR0CDNC6tknTidX2UKGgGaAloD0MIzO80mfE0VkCUhpRSlGgVTegDaBZHQIM1titq59V1fZQoaAZoCWgPQwiXqrTFNTxdQJSGlFKUaBVN6ANoFkdAgzW9h7Vrh3V9lChoBmgJaA9DCL6lnC92sGFAlIaUUpRoFU3oA2gWR0CDNf225QP7dX2UKGgGaAloD0MIF9NM9zreYUCUhpRSlGgVTegDaBZHQINMucJ+lTF1fZQoaAZoCWgPQwh9A5MbRdthQJSGlFKUaBVN6ANoFkdAg1bzBZZB9nV9lChoBmgJaA9DCPjii/b4U2JAlIaUUpRoFU3oA2gWR0CDXuKRdQfqdX2UKGgGaAloD0MI2q7QB8vXWkCUhpRSlGgVTegDaBZHQINgfATIvJ11fZQoaAZoCWgPQwhZFkz8UfRtQJSGlFKUaBVNRgNoFkdAg2FhjnV5KXV9lChoBmgJaA9DCMMOY9LfXV9AlIaUUpRoFU3oA2gWR0CDaLCeEqUedX2UKGgGaAloD0MIE0n0MooOXUCUhpRSlGgVTegDaBZHQINyoO4G2Th1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}