a2c-PandaReachDense-v2 / config.json
odeshays's picture
add model
60f15f0
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fafc1aaa170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fafc1aa6d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686915704597560587, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS43Kv3CP1L+72wy/9XN5vnJlsD9z3NO+tSQhPxdvRb+p7yu+k14MP5u1sD/WhXy9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6eruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]]", "desired_goal": "[[-1.5824369 -1.6606274 -0.5502278 ]\n [-0.2436064 1.3780959 -0.41379127]\n [ 0.62946635 -0.77122635 -0.16790642]\n [ 0.5483181 1.3805422 -0.06165107]]", "observation": "[[ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJoYJviBIDz4UkyQ+6cOvvFl9jLwtWUE+kgaRvYychjuVw4A9zXCOva4tJTw2pjI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1343008 0.13992357 0.16071731]\n [-0.02145572 -0.01714961 0.18881674]\n [-0.07081331 0.00410802 0.06287304]\n [-0.06955109 0.01008169 0.01090389]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILzTXaaTl87+UhpRSlIwBbJRLMowBdJRHQJgb0NRWLgp1fZQoaAZoCWgPQwh0CYfe4mEPwJSGlFKUaBVLMmgWR0CYG1d69kBkdX2UKGgGaAloD0MIZhAf2PFfFcCUhpRSlGgVSzJoFkdAmBrdFF2FFnV9lChoBmgJaA9DCFSM8zehEO+/lIaUUpRoFUsyaBZHQJgaYTWXkYJ1fZQoaAZoCWgPQwhP6WD9nyMMwJSGlFKUaBVLMmgWR0CYHfq4YrJ9dX2UKGgGaAloD0MI4UGz694aFcCUhpRSlGgVSzJoFkdAmB2BfShJy3V9lChoBmgJaA9DCCvCTUaVwQDAlIaUUpRoFUsyaBZHQJgdBvwVj7R1fZQoaAZoCWgPQwiy1lBqL4IZwJSGlFKUaBVLMmgWR0CYHItNzr/sdX2UKGgGaAloD0MIfCjRksdT6r+UhpRSlGgVSzJoFkdAmCA3O4XoDHV9lChoBmgJaA9DCEQWaeId0BbAlIaUUpRoFUsyaBZHQJgfvdl/Yrd1fZQoaAZoCWgPQwhFDaZh+Ej+v5SGlFKUaBVLMmgWR0CYH0NWluWKdX2UKGgGaAloD0MIE0n0MoqlAcCUhpRSlGgVSzJoFkdAmB7HUtqYZ3V9lChoBmgJaA9DCPDeUWNCDPS/lIaUUpRoFUsyaBZHQJgibTnaFmF1fZQoaAZoCWgPQwjcnEoGgOoAwJSGlFKUaBVLMmgWR0CYIfQVsUItdX2UKGgGaAloD0MIRWXDmsqCDsCUhpRSlGgVSzJoFkdAmCF5ylvZRXV9lChoBmgJaA9DCHqM8szL4QDAlIaUUpRoFUsyaBZHQJgg/jR2KVJ1fZQoaAZoCWgPQwgaGk8Ece4XwJSGlFKUaBVLMmgWR0CYJOgOz6acdX2UKGgGaAloD0MIsd09QPelDcCUhpRSlGgVSzJoFkdAmCRux8lXzXV9lChoBmgJaA9DCLt868N6owPAlIaUUpRoFUsyaBZHQJgj9UtI0651fZQoaAZoCWgPQwhmn8coz4wRwJSGlFKUaBVLMmgWR0CYI3mFrVOLdX2UKGgGaAloD0MIAb1w58LI+7+UhpRSlGgVSzJoFkdAmCcHtF8XvnV9lChoBmgJaA9DCEzhQbPrHvK/lIaUUpRoFUsyaBZHQJgmjnSv1UV1fZQoaAZoCWgPQwhkz57L1OT+v5SGlFKUaBVLMmgWR0CYJhQizLOidX2UKGgGaAloD0MI2LlpM07DBcCUhpRSlGgVSzJoFkdAmCWYQ8OkL3V9lChoBmgJaA9DCPtZLEXydQDAlIaUUpRoFUsyaBZHQJgpX3PAwf11fZQoaAZoCWgPQwgwZktWRfgBwJSGlFKUaBVLMmgWR0CYKOY3Ns3ydX2UKGgGaAloD0MI8UV7vJAuAcCUhpRSlGgVSzJoFkdAmChsLSeAeHV9lChoBmgJaA9DCBMn9zsUNRDAlIaUUpRoFUsyaBZHQJgn8KzAvct1fZQoaAZoCWgPQwgGaFvNOnMRwJSGlFKUaBVLMmgWR0CYK4nW8RL9dX2UKGgGaAloD0MI0T/BxYraGMCUhpRSlGgVSzJoFkdAmCsQx8D0UXV9lChoBmgJaA9DCBa+vtalVhHAlIaUUpRoFUsyaBZHQJgqlmthd+p1fZQoaAZoCWgPQwhTexFtx5QEwJSGlFKUaBVLMmgWR0CYKhq9oN/fdX2UKGgGaAloD0MIg7709udCA8CUhpRSlGgVSzJoFkdAmC3Dh99c8nV9lChoBmgJaA9DCJ1kq8spAfa/lIaUUpRoFUsyaBZHQJgtSnLq2Sd1fZQoaAZoCWgPQwjQgHozap4IwJSGlFKUaBVLMmgWR0CYLNBAv+OwdX2UKGgGaAloD0MIK9mxEYjXBsCUhpRSlGgVSzJoFkdAmCxUgr6LwXV9lChoBmgJaA9DCIhJuJBH8BDAlIaUUpRoFUsyaBZHQJgv9UMoc711fZQoaAZoCWgPQwglCFdAob4MwJSGlFKUaBVLMmgWR0CYL3vrGBFvdX2UKGgGaAloD0MIFY4glWIHHcCUhpRSlGgVSzJoFkdAmC8BiLEUCnV9lChoBmgJaA9DCMUaLnJP9w3AlIaUUpRoFUsyaBZHQJguhbhWHUN1fZQoaAZoCWgPQwh+/nvw2oURwJSGlFKUaBVLMmgWR0CYMiFQEZBLdX2UKGgGaAloD0MIOnr83qY/B8CUhpRSlGgVSzJoFkdAmDGoSteUp3V9lChoBmgJaA9DCIarAyDuigbAlIaUUpRoFUsyaBZHQJgxLetSydF1fZQoaAZoCWgPQwj8yK1Jt8UDwJSGlFKUaBVLMmgWR0CYMLJVsDW9dX2UKGgGaAloD0MIycuaWOCrDMCUhpRSlGgVSzJoFkdAmDROqNp/PXV9lChoBmgJaA9DCOblsPuOYQDAlIaUUpRoFUsyaBZHQJgz1W4mTkh1fZQoaAZoCWgPQwg+BFWjV0MOwJSGlFKUaBVLMmgWR0CYM1stTUAldX2UKGgGaAloD0MIYmpLHeTlEcCUhpRSlGgVSzJoFkdAmDLfgaWHDnV9lChoBmgJaA9DCEmCcAUUKv+/lIaUUpRoFUsyaBZHQJg2bRTjvNN1fZQoaAZoCWgPQwgepRKe0OsPwJSGlFKUaBVLMmgWR0CYNfPeHi3odX2UKGgGaAloD0MIpvELrySZAsCUhpRSlGgVSzJoFkdAmDV5nctXgnV9lChoBmgJaA9DCBNDcjJxCwDAlIaUUpRoFUsyaBZHQJg0/btZ3cJ1fZQoaAZoCWgPQwh63o0FhcEDwJSGlFKUaBVLMmgWR0CYOJ6wdKdydX2UKGgGaAloD0MIRu7p6o5lBMCUhpRSlGgVSzJoFkdAmDgllkH2RXV9lChoBmgJaA9DCC9vDtdq7wfAlIaUUpRoFUsyaBZHQJg3q2G7Bft1fZQoaAZoCWgPQwiRQln4+tr9v5SGlFKUaBVLMmgWR0CYNy+7lJYldX2UKGgGaAloD0MIqU9yh03kB8CUhpRSlGgVSzJoFkdAmDrBshxHXnV9lChoBmgJaA9DCD6UaMnjyQzAlIaUUpRoFUsyaBZHQJg6SJsO5J91fZQoaAZoCWgPQwhkQPZ69+cBwJSGlFKUaBVLMmgWR0CYOc4qPOpsdX2UKGgGaAloD0MI4nK8AtHTAMCUhpRSlGgVSzJoFkdAmDlSUkfLcXV9lChoBmgJaA9DCAaf5uRFZv2/lIaUUpRoFUsyaBZHQJg9JzySV4Z1fZQoaAZoCWgPQwj2mbM+5XgDwJSGlFKUaBVLMmgWR0CYPK8TzunddX2UKGgGaAloD0MIbRtGQfB4DcCUhpRSlGgVSzJoFkdAmDw0vf0mMXV9lChoBmgJaA9DCOgyNQnesA3AlIaUUpRoFUsyaBZHQJg7uOcUdrB1fZQoaAZoCWgPQwiSO2wiMxcIwJSGlFKUaBVLMmgWR0CYP39uxbB5dX2UKGgGaAloD0MIdhiT/l7qAsCUhpRSlGgVSzJoFkdAmD8HiiqQzXV9lChoBmgJaA9DCKIJFLGIQQ3AlIaUUpRoFUsyaBZHQJg+jTCtRvZ1fZQoaAZoCWgPQwj2QCswZDX/v5SGlFKUaBVLMmgWR0CYPhF72L5zdX2UKGgGaAloD0MIK6T8pNrn9L+UhpRSlGgVSzJoFkdAmELuyJKraXV9lChoBmgJaA9DCN2VXTC4pgPAlIaUUpRoFUsyaBZHQJhCdzHS4ON1fZQoaAZoCWgPQwizYOKPoq4AwJSGlFKUaBVLMmgWR0CYQf6hQFcIdX2UKGgGaAloD0MIF2U2yCTj/b+UhpRSlGgVSzJoFkdAmEGE6T4cm3V9lChoBmgJaA9DCJYjZCDPbve/lIaUUpRoFUsyaBZHQJhGlxT850d1fZQoaAZoCWgPQwgDJ9vAHaj1v5SGlFKUaBVLMmgWR0CYRh9b5dnkdX2UKGgGaAloD0MIn8vUJHhD77+UhpRSlGgVSzJoFkdAmEWnDziCKHV9lChoBmgJaA9DCONw5ldzQP6/lIaUUpRoFUsyaBZHQJhFLMGHHm11fZQoaAZoCWgPQwhFt17TgyIKwJSGlFKUaBVLMmgWR0CYSjqkM1CPdX2UKGgGaAloD0MI2lazzvheAMCUhpRSlGgVSzJoFkdAmEnDujRD1HV9lChoBmgJaA9DCNv3qL9eofu/lIaUUpRoFUsyaBZHQJhJSyzHCGh1fZQoaAZoCWgPQwiPq5FdaRnzv5SGlFKUaBVLMmgWR0CYSNFqzqrzdX2UKGgGaAloD0MIj6m7sgvmAcCUhpRSlGgVSzJoFkdAmE6Ytcv/R3V9lChoBmgJaA9DCNgMcEG2LP2/lIaUUpRoFUsyaBZHQJhOIcxTKkl1fZQoaAZoCWgPQwgCu5o8ZTUFwJSGlFKUaBVLMmgWR0CYTaw/xDsudX2UKGgGaAloD0MIPdUhN8NN/b+UhpRSlGgVSzJoFkdAmE0zNliBoXV9lChoBmgJaA9DCGMNF7mnawfAlIaUUpRoFUsyaBZHQJhSkx59mYl1fZQoaAZoCWgPQwifVtEfmlkDwJSGlFKUaBVLMmgWR0CYUhtdRiw0dX2UKGgGaAloD0MIlL2lnC8297+UhpRSlGgVSzJoFkdAmFGiwOe8PHV9lChoBmgJaA9DCE5+i06WmgfAlIaUUpRoFUsyaBZHQJhRKEBbOeJ1fZQoaAZoCWgPQwhPkq6ZfPMFwJSGlFKUaBVLMmgWR0CYVoMN+b3HdX2UKGgGaAloD0MIJh5QNuWK9r+UhpRSlGgVSzJoFkdAmFYL4Ju2qnV9lChoBmgJaA9DCNjzNctlY/W/lIaUUpRoFUsyaBZHQJhVk580DU51fZQoaAZoCWgPQwhe9YB5yBQOwJSGlFKUaBVLMmgWR0CYVRmXgLqmdX2UKGgGaAloD0MIBwySPq0yEMCUhpRSlGgVSzJoFkdAmFlAZXMhYHV9lChoBmgJaA9DCDZzSGqhpAfAlIaUUpRoFUsyaBZHQJhYx00WM0h1fZQoaAZoCWgPQwhq2VpfJLQFwJSGlFKUaBVLMmgWR0CYWEy+pOvddX2UKGgGaAloD0MIzvqUY7L4CsCUhpRSlGgVSzJoFkdAmFfQ9zOopHV9lChoBmgJaA9DCMb6BiY3Cvu/lIaUUpRoFUsyaBZHQJhbcsf7rLR1fZQoaAZoCWgPQwjsa11qhD7+v5SGlFKUaBVLMmgWR0CYWvl/pdKNdX2UKGgGaAloD0MI0eY4twm3+7+UhpRSlGgVSzJoFkdAmFp/MOf/WHV9lChoBmgJaA9DCCzTLxFvXfq/lIaUUpRoFUsyaBZHQJhaAz41xbV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}