my first RL!
Browse files- LunarLander-v2.zip +2 -2
- LunarLander-v2/data +24 -24
- LunarLander-v2/policy.optimizer.pth +1 -1
- LunarLander-v2/policy.pth +1 -1
- LunarLander-v2/system_info.txt +4 -4
- README.md +4 -4
- config.json +1 -1
- results.json +1 -1
LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6817cca93a34bb62a959fb666cf0b370a8270e693615128f478cfdf68a725e1a
|
3 |
+
size 146305
|
LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": null,
|
33 |
"_last_episode_starts": {
|
34 |
":type:": "<class 'numpy.ndarray'>",
|
35 |
-
":serialized:": "
|
36 |
},
|
37 |
"_last_original_obs": null,
|
38 |
"_episode_num": 0,
|
39 |
"use_sde": false,
|
40 |
"sde_sample_freq": -1,
|
41 |
-
"_current_progress_remaining": -0.
|
42 |
"_stats_window_size": 100,
|
43 |
"ep_info_buffer": {
|
44 |
":type:": "<class 'collections.deque'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"ep_success_buffer": {
|
48 |
":type:": "<class 'collections.deque'>",
|
49 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
},
|
51 |
-
"_n_updates":
|
52 |
"observation_space": {
|
53 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
-
":serialized:": "
|
55 |
"dtype": "float32",
|
56 |
"bounded_below": "[ True True True True True True True True]",
|
57 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -62,7 +62,7 @@
|
|
62 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
-
"_np_random":
|
66 |
},
|
67 |
"action_space": {
|
68 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
@@ -80,17 +80,17 @@
|
|
80 |
"ent_coef": 0.01,
|
81 |
"vf_coef": 0.5,
|
82 |
"max_grad_norm": 0.5,
|
83 |
-
"batch_size":
|
84 |
"n_epochs": 4,
|
85 |
"clip_range": {
|
86 |
":type:": "<class 'function'>",
|
87 |
-
":serialized:": "
|
88 |
},
|
89 |
"clip_range_vf": null,
|
90 |
"normalize_advantage": true,
|
91 |
"target_kl": null,
|
92 |
"lr_schedule": {
|
93 |
":type:": "<class 'function'>",
|
94 |
-
":serialized:": "
|
95 |
}
|
96 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3b583b130>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3b583b1c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3b583b250>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3b583b2e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa3b583b370>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa3b583b400>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa3b583b490>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3b583b520>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa3b583b5b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3b583b640>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3b583b6d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3b583b760>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa3b5833380>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1686796064647751043,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": null,
|
33 |
"_last_episode_starts": {
|
34 |
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
36 |
},
|
37 |
"_last_original_obs": null,
|
38 |
"_episode_num": 0,
|
39 |
"use_sde": false,
|
40 |
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
42 |
"_stats_window_size": 100,
|
43 |
"ep_info_buffer": {
|
44 |
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuzQmeDnOMAWyUTQsBjAF0lEdAkPr+HnEET3V9lChoBkfAOD+K4x1xKmgHS9ZoCEdAkPvtCE6DG3V9lChoBkdAcKWj+aScLGgHTQEBaAhHQJD9BI8QqZt1fZQoaAZHQHERaQ3gk1NoB00lAWgIR0CQ/kfZmI0qdX2UKGgGR8BIJjhcZ9/jaAdNEQFoCEdAkP+wSvkilnV9lChoBkdAcIzd56dDpmgHTfgBaAhHQJEB4WN3np11fZQoaAZHQCMhTn7pFCtoB0u+aAhHQJECtDF6zE91fZQoaAZHwDNcfgaWHDdoB0vHaAhHQJEDxigCfYl1fZQoaAZHv7mo73fyf+VoB0vWaAhHQJEEsGY8dPt1fZQoaAZHQGv6o4lyBCloB01LAWgIR0CRBhdWQwK0dX2UKGgGR0BvPQ1zhgmaaAdNmQFoCEdAkQgE03wTd3V9lChoBkdAcXgpQUHpr2gHTSsBaAhHQJEJSfqX4TN1fZQoaAZHQHENSLdepn9oB01SAWgIR0CRCrktVaOhdX2UKGgGR0BtAyFyq+8HaAdNRwFoCEdAkQxWTHKfWnV9lChoBkdAbwWciGFi8WgHTTECaAhHQJEOwxsVLzx1fZQoaAZHv/47uDzyz5ZoB0vlaAhHQJEPwYqG1x91fZQoaAZHQHCenUx20RhoB02HAWgIR0CREbMUypJgdX2UKGgGR0BxOKOtGNJfaAdNXgFoCEdAkRNJtzjm0XV9lChoBkdAcJsSzgMtsmgHTR0BaAhHQJEUiEf1Yhd1fZQoaAZHQHDvDUVi4KBoB002AWgIR0CRFiVBD5TIdX2UKGgGR0Bvu/HzYmLMaAdNqQNoCEdAkRotIPK+z3V9lChoBkdAJdFBppN9IGgHS95oCEdAkRthBVuJlHV9lChoBkdAccx8YAKfF2gHTQEBaAhHQJEcfOVxCIF1fZQoaAZHQGCGqYJE6T5oB03oA2gIR0CRIQ94NZvDdX2UKGgGR0BwEgZDRc/uaAdNjAJoCEdAkSQeEM9bHXV9lChoBkdAPuRH09QoC2gHS99oCEdAkSUUbPyCnXV9lChoBkdAcBfyULUkOmgHS+xoCEdAkSYX+IdlunV9lChoBkdAcTcM1jy4F2gHTQcBaAhHQJEnPi83+/B1fZQoaAZHwA/Q2MsH0K9oB0vKaAhHQJEoHIo3Jgd1fZQoaAZHQHA9k7Sy+pRoB014AWgIR0CRKfjcEeQudX2UKGgGR0Bw6JN47ihnaAdL4GgIR0CRKvH6/IsAdX2UKGgGR0BHooT4+KTCaAdL0WgIR0CRK9hLoOhCdX2UKGgGR0Bvcph4MWoFaAdNGAFoCEdAkS1IUSIxg3V9lChoBkdAadN5N47ihmgHTUYBaAhHQJEur2tdRix1fZQoaAZHwACskIHC4z9oB0vgaAhHQJEvoyAQQMB1fZQoaAZHQG6BYKQaJhxoB01DAWgIR0CRMQcc2itadX2UKGgGR0BtAtoWYWtVaAdNZAFoCEdAkTLKWHDaXnV9lChoBkdAbCm3QUpNK2gHTQ4BaAhHQJEz8Lv1DjR1fZQoaAZHQG4UQG4ZuQ9oB00zAWgIR0CRNUJZ4fOldX2UKGgGR0Bo2ZtHhCMQaAdNBgJoCEdAkTfTc6/7BXV9lChoBkdAbVPkCmuTzWgHTRABaAhHQJE4+e9SMtN1fZQoaAZHQEvj+KjzqbBoB0v+aAhHQJE6DOPeYUp1fZQoaAZHQG8V3974SHxoB00kAWgIR0CRO4T0g8r7dX2UKGgGR0Bw7/IGQjlgaAdNKQFoCEdAkTzYSUTtcHV9lChoBkdAbYdpcHGCI2gHTVQBaAhHQJE+XZHuqm11fZQoaAZHQHCig9V3ljpoB00PAWgIR0CRP659E1EWdX2UKGgGR0BwjdRUFSsKaAdNPAFoCEdAkUFGuTzNEHV9lChoBkdAcJw7wazeGmgHTQkBaAhHQJFCbyLAHml1fZQoaAZHQHCFO40/GERoB016AmgIR0CRRW0ZWJaadX2UKGgGR0BxSZ3np0OmaAdNMAFoCEdAkUbzwMH8j3V9lChoBkfARfCuSwGGEmgHS+9oCEdAkUgL8zhxYXV9lChoBkfAGEXQ+lj3EmgHS9RoCEdAkUjsqOLiuXV9lChoBkdAb4TjZL7GemgHTRgDaAhHQJFMoIC2c8V1fZQoaAZHP+Cj4593KSxoB0vraAhHQJFNpNWU8mt1fZQoaAZHwEswALApKBdoB0v8aAhHQJFO/kDIRyx1fZQoaAZHwESAvQnhKlJoB0u7aAhHQJFPz+yZ8a51fZQoaAZHQG+AMAFPi1loB00hAWgIR0CRUTr2g398dX2UKGgGR0BsGFs3yZrpaAdN2AFoCEdAkVN/A44p+nV9lChoBkdAarQIu5BkZ2gHTVoBaAhHQJFU+zt1IRR1fZQoaAZHQHFnAwoLG71oB00CAWgIR0CRVhWXC0ngdX2UKGgGR0AeGSmqHXVcaAdL1mgIR0CRVwI+nqFAdX2UKGgGR0BAnc580DU3aAdL2mgIR0CRWCbADaGpdX2UKGgGR0Bv7PxWkrPMaAdNuwFoCEdAkVoIxxkupXV9lChoBkdAbtlAJswcpGgHTdYBaAhHQJFcD9hqj8F1fZQoaAZHQFwpxh2GIsRoB03oA2gIR0CRYJVbiZOSdX2UKGgGR0AoANQTEit8aAdLxmgIR0CRYaSPU8V6dX2UKGgGR0Bv9ZVsDW9UaAdNqQFoCEdAkWNxmXgLqnV9lChoBkfAPTUpiI+GGmgHTQ8BaAhHQJFkm+PBBRh1fZQoaAZHQG2jTJZGKAJoB002AWgIR0CRZjvPC2tudX2UKGgGR0BsqXKEFnqWaAdNRQFoCEdAkWenV09yLnV9lChoBkdAXQGxZ+x4ZGgHTegDaAhHQJFsPgaWHDd1fZQoaAZHQCCVGI9C/oJoB0vGaAhHQJFtGJemelN1fZQoaAZHQF/qyCWeHzpoB03oA2gIR0CRcbtXgccVdX2UKGgGR0BwMuQuEmICaAdNPgFoCEdAkXMbX+VC5XV9lChoBkdAcM9X4CZF5WgHTUQBaAhHQJF0t8x9G7V1fZQoaAZHwD6d0+1SflJoB0vzaAhHQJF1w7cO9WZ1fZQoaAZHQFzXTn7pFCtoB03oA2gIR0CRemFhXr+pdX2UKGgGR0BQAwfhddE9aAdN6ANoCEdAkX7+fh/AkHV9lChoBkdAcEzt03fhuWgHTSkBaAhHQJGASF/QSjB1fZQoaAZHQHCvdugpSaVoB00pAWgIR0CRgccH4XXRdX2UKGgGR0Ax9EOy3Td+aAdL12gIR0CRgraXa8HwdX2UKGgGR0Bvf+APNFBqaAdNMgFoCEdAkYQE3bVSXXV9lChoBkfAE6qFh5PdmGgHTRgBaAhHQJGFOBkI5YJ1fZQoaAZHP9jD+BH09QpoB0u9aAhHQJGGB5kbxVh1fZQoaAZHQGsZefh/Aj9oB01ZA2gIR0CRieTJQtSRdX2UKGgGR0Bvy70rbxmTaAdNGQFoCEdAkYtQ5Jbt7nV9lChoBkdAcIDAPd2xIWgHS/poCEdAkYxkBCD28XV9lChoBkdAQXh/G2kSEmgHS/1oCEdAkY14M4LkS3V9lChoBkdAcAKYcNpdr2gHTZIBaAhHQJGPOkvboKV1fZQoaAZHQGny+RHPNV1oB00XAmgIR0CRke3Roh6jdX2UKGgGR8AvN48EFGG3aAdNFQFoCEdAkZMfI8yN43V9lChoBkdAb0UMWoFV1mgHTckBaAhHQJGVZnuiN851fZQoaAZHQG0G4ptrKvFoB02DAWgIR0CRlxgCwKSgdX2UKGgGR8A5ajKPn0TUaAdL+mgIR0CRmCsSCe3AdX2UKGgGR0BsQqzZ6D5CaAdNdAFoCEdAkZoCuMdcS3V9lChoBkfAMl5N47ihnWgHS+ZoCEdAkZsBESdvsXV9lChoBkdAcRRD+zdDY2gHTQoCaAhHQJGdR0U47zV1fZQoaAZHQGloVgYxcmloB00yAWgIR0CRns/yGzrvdX2UKGgGR0BwAlwuM+/yaAdNvQFoCEdAkaC7SiM5wXV9lChoBkfASW3bj94u9WgHTSgBaAhHQJGh/qkdmxt1ZS4="
|
46 |
},
|
47 |
"ep_success_buffer": {
|
48 |
":type:": "<class 'collections.deque'>",
|
49 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
},
|
51 |
+
"_n_updates": 7816,
|
52 |
"observation_space": {
|
53 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQcSKyS4i22YqhcKXLwrLCe4wDaW5jlIoQ7XV38Tw2V2pTx6uiyRpoE3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
55 |
"dtype": "float32",
|
56 |
"bounded_below": "[ True True True True True True True True]",
|
57 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
62 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": "Generator(PCG64)"
|
66 |
},
|
67 |
"action_space": {
|
68 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
|
|
80 |
"ent_coef": 0.01,
|
81 |
"vf_coef": 0.5,
|
82 |
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 512,
|
84 |
"n_epochs": 4,
|
85 |
"clip_range": {
|
86 |
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
88 |
},
|
89 |
"clip_range_vf": null,
|
90 |
"normalize_advantage": true,
|
91 |
"target_kl": null,
|
92 |
"lr_schedule": {
|
93 |
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
}
|
96 |
}
|
LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d27c8ebdf602e6ecd1c8c75b9fe4077d8fd463cd416cd39ce3db5ab5eda930c3
|
3 |
size 88057
|
LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55cd0fa04344c5559d0364e0af715032276cf6a1f16dad113e39a0f58c92fd4a
|
3 |
size 43329
|
LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.0.1+
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2
|
2 |
+
- Python: 3.10.9
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
9 |
- OpenAI Gym: 0.25.2
|
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: PP)
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 68.62 +/- 121.41
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PP)** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PP)** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12f67580d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12f6758160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12f67581f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12f6758280>", "_build": "<function ActorCriticPolicy._build at 0x7f12f6758310>", "forward": "<function ActorCriticPolicy.forward at 0x7f12f67583a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12f6758430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12f67584c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12f6758550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12f67585e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12f6758670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12f6758700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f12f6942700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686797513996268308, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL4s9KVY6qMAWyUTRcBjAF0lEdAkhIp1A7gbnV9lChoBkdAcXgKEnLJS2gHTS0BaAhHQJIUB06o2n91fZQoaAZHQHIOIkRjBmBoB003AWgIR0CSFOtuUD+zdX2UKGgGR0BwOEmShakiaAdNLQFoCEdAkhUA482aUnV9lChoBkdAcHW20zCUHWgHTRkBaAhHQJIVYRChN/R1fZQoaAZHQG5FhbOeJ55oB00KAWgIR0CSFeOxjawmdX2UKGgGR0Bx8sJPZZjhaAdNDAFoCEdAkhbyxZ+x4nV9lChoBkdAc15eGO+7DmgHTRQBaAhHQJIW8Ygq3E11fZQoaAZHQHACKAJ9iMJoB00GAWgIR0CSF0dhAnlXdX2UKGgGR0Bsv2gDifg8aAdNBAFoCEdAkhdJHI6sAHV9lChoBkdAb6SM1jy4F2gHTQgBaAhHQJIXyJ3xFy91fZQoaAZHQEzfdj5KvmpoB0vgaAhHQJIYTCoCMgl1fZQoaAZHQHN0drTH80loB00hAWgIR0CSGJvF3pwCdX2UKGgGR0BwI0Z75VOsaAdNJwFoCEdAkhixW1c+q3V9lChoBkdAcTXXzlLeymgHTS4BaAhHQJIaANMGorF1fZQoaAZHQG9H+HJtBOZoB01AAWgIR0CSG0HRTjvNdX2UKGgGR0BxNV4fOlfraAdNDQFoCEdAkhvC3ocJdHV9lChoBkdAblMVbiZOSGgHS/toCEdAkhwLgbZOBXV9lChoBkdAclmTDO1OTWgHS/poCEdAkhwUwJw84nV9lChoBkdAbK2D9Oymh2gHTQwBaAhHQJIc63DvVmV1fZQoaAZHQHMMjr7fpEBoB00UAWgIR0CSHaN3W4EwdX2UKGgGR0BufmJSBK+SaAdNCwFoCEdAkh6/9YOlPHV9lChoBkdAchDji4rjHWgHS/hoCEdAkh7A1WKdhHV9lChoBkdAcvUBE8aGYmgHTS4BaAhHQJIffCwbEP11fZQoaAZHQHLwTh1klNVoB0v9aAhHQJIf7s0HhS91fZQoaAZHQHNTENayKN1oB00WAWgIR0CSID5RTCLudX2UKGgGR0Byf9YYBNmEaAdNSAFoCEdAkiCj850bLnV9lChoBkdAcRC/Q0GeMGgHTR4BaAhHQJIg2LUCq6x1fZQoaAZHQHGazTrmhdtoB00gAWgIR0CSIpbYK6WgdX2UKGgGR0Byb+NgjQiSaAdNBAFoCEdAkiMfxMFlkHV9lChoBkdAb8c/Dcdo4GgHTQkBaAhHQJIkR86V+ql1fZQoaAZHQHDBz4+KTB9oB00RAWgIR0CSJH5uqFRHdX2UKGgGR0BzSOplz2eyaAdNIgFoCEdAkiSxPO6d2HV9lChoBkdAcJzWAwwj+2gHTeoBaAhHQJIlhmukk8l1fZQoaAZHQHBblqzqrzZoB0v+aAhHQJIlrsHB1tB1fZQoaAZHQGAZdLxqfvpoB03oA2gIR0CSJgWGyon8dX2UKGgGR0BxJgWVNYbLaAdNAwFoCEdAkibxp1zQu3V9lChoBkdAb1lcY64lQmgHTQUBaAhHQJInALXtjTd1fZQoaAZHQHAPPetSydFoB0v+aAhHQJInddD6WPd1fZQoaAZHQHIAatHQQcxoB0vvaAhHQJInuvdM0xd1fZQoaAZHQHGW5byH2ytoB002AWgIR0CSPqldTo+wdX2UKGgGR0By6I+FDfFaaAdNtwFoCEdAkj+kKzAvc3V9lChoBkdAcU/wyIpH7WgHTTYBaAhHQJI/pzuF6Ax1fZQoaAZHQHGQ3QUpNK1oB01CAWgIR0CSP85ksjFAdX2UKGgGR0Bte9OKwY+CaAdNAAFoCEdAkkAgv+OwPnV9lChoBkdAcpYmO2iL22gHS+hoCEdAkkBjwlSjxnV9lChoBkdAcbD7CBPKuGgHTQIBaAhHQJJBfKgZjx11fZQoaAZHQGwkMTewcHZoB01IAWgIR0CSQa+yJKradX2UKGgGR0BwvUdaMaS+aAdNAAFoCEdAkkIpWV/tpnV9lChoBkdAcQJC7sfJWGgHS/toCEdAkkJzNyHVPXV9lChoBkdAcSWhN/OMVGgHTRMBaAhHQJJC1GViWmh1fZQoaAZHQG2cni3ocJdoB00QAWgIR0CSQ/RDTjNqdX2UKGgGR0BwqCHk92X+aAdL+mgIR0CSRBKb8WKudX2UKGgGR0ByuEfq5byIaAdNCAFoCEdAkkQ02gnMMnV9lChoBkdAcc5lEqlP8GgHTZABaAhHQJJFQksz2vl1fZQoaAZHQHPrx64UeuFoB01CAWgIR0CSRUq3VkMDdX2UKGgGR0Bt0IDPnjhlaAdL+mgIR0CSRnj+717IdX2UKGgGR0ByYghJRO1waAdNDAFoCEdAkkb4TXarWHV9lChoBkdAbveR6F/QSmgHTRoBaAhHQJJHhIAfdRB1fZQoaAZHQHL0ANb1RLtoB009AWgIR0CSR4KDkELZdX2UKGgGR0Bx0ddrwe/6aAdNBQFoCEdAkkeLwWnCO3V9lChoBkdAcpVSb6P8ymgHTSwBaAhHQJJIQ7jkuHx1fZQoaAZHQHD6/pD/lyRoB00QAWgIR0CSSMcp9ZzQdX2UKGgGR0BylZ5yEL6UaAdNDQFoCEdAkkjbTDwYtXV9lChoBkdAcYyjm0VrRGgHS/VoCEdAkkjyYw7DEXV9lChoBkdAcwngf2bobGgHTTsBaAhHQJJKgQe3hGZ1fZQoaAZHQHHp0T6BRQ9oB00mAWgIR0CSSpjnV5KOdX2UKGgGR0BzchtIkJKKaAdNIgFoCEdAkkuZEhJRO3V9lChoBkdAcKqpobn5i2gHS/xoCEdAkkvWxlg+hXV9lChoBkdAbT+e7L+xW2gHTSsBaAhHQJJMFvHcUM51fZQoaAZHQFJbxI8QqZtoB0u/aAhHQJJMedhAnlZ1fZQoaAZHQHHDuhPCVKRoB00iAWgIR0CSTOMNc4YKdX2UKGgGR0B0Nn1g6U7kaAdNbQFoCEdAkk2/F72L53V9lChoBkdAclEtPHktE2gHS/9oCEdAkk239itq6HV9lChoBkdAcfs+IuXeFmgHS+5oCEdAkk3G6kIomXV9lChoBkdAbHGzpHI6sGgHTR8BaAhHQJJODs6aLGd1fZQoaAZHQG/CwMhHLA5oB00nAWgIR0CSTzhN/OMVdX2UKGgGR0Bxzj4HoouxaAdL+mgIR0CST1vnr6cidX2UKGgGR0Bv11Y4hllLaAdNFQFoCEdAkk99ihFmWnV9lChoBkdAb/vh1klNUWgHTTQBaAhHQJJREqqfe1t1fZQoaAZHQHFIZcLSeAdoB01FAWgIR0CSUXJCBwuNdX2UKGgGR0ByEDSNOuaGaAdNEgFoCEdAklHkSqU/wHV9lChoBkdAcp1aUiY9gWgHTQgBaAhHQJJSo0m+j/N1fZQoaAZHQG3RWBas6q9oB002AWgIR0CSUtO/cnE3dX2UKGgGR0ByO9sHjZL7aAdNCgFoCEdAklQyJsO5KHV9lChoBkdAcwLoCuEEkmgHTTkBaAhHQJJUcmlZX+51fZQoaAZHQHGW7O7g88toB00OAWgIR0CSVVgL7XQMdX2UKGgGR0Bw7fbcoH9naAdNFAFoCEdAklV4DoyKvXV9lChoBkdAcbTyH2ys0mgHTQwBaAhHQJJVplDneSB1fZQoaAZHQHCqpoXbdrRoB00EAWgIR0CSVwNDMNc4dX2UKGgGR0BwEuAMDwH8aAdL/mgIR0CSVwWcBltkdX2UKGgGR0BwN7vmYBvKaAdNCAFoCEdAklcAv6CUYHV9lChoBkdAcxDflp48l2gHTUYBaAhHQJJXF0NjLB91fZQoaAZHQG+wtthuwX9oB02VAWgIR0CSV41HvttzdX2UKGgGR0BPG+PRzBAOaAdLxGgIR0CSV89JjDsMdX2UKGgGR0BJEPzFuNxVaAdLumgIR0CSWFuOjqOcdX2UKGgGR0Bwt9k+X7cgaAdNwgFoCEdAklkHuy/sV3V9lChoBkdAbmETV2A5JmgHTSEBaAhHQJJZY3DNyHV1fZQoaAZHQHM0CaNMoMNoB00gAWgIR0CSWa1mJ3xGdX2UKGgGR0BwyQZP2wmmaAdNFAFoCEdAklpqBiCrcXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3b583b130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3b583b1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3b583b250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3b583b2e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa3b583b370>", "forward": "<function ActorCriticPolicy.forward at 0x7fa3b583b400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa3b583b490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3b583b520>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa3b583b5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3b583b640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3b583b6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3b583b760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa3b5833380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686796064647751043, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuzQmeDnOMAWyUTQsBjAF0lEdAkPr+HnEET3V9lChoBkfAOD+K4x1xKmgHS9ZoCEdAkPvtCE6DG3V9lChoBkdAcKWj+aScLGgHTQEBaAhHQJD9BI8QqZt1fZQoaAZHQHERaQ3gk1NoB00lAWgIR0CQ/kfZmI0qdX2UKGgGR8BIJjhcZ9/jaAdNEQFoCEdAkP+wSvkilnV9lChoBkdAcIzd56dDpmgHTfgBaAhHQJEB4WN3np11fZQoaAZHQCMhTn7pFCtoB0u+aAhHQJECtDF6zE91fZQoaAZHwDNcfgaWHDdoB0vHaAhHQJEDxigCfYl1fZQoaAZHv7mo73fyf+VoB0vWaAhHQJEEsGY8dPt1fZQoaAZHQGv6o4lyBCloB01LAWgIR0CRBhdWQwK0dX2UKGgGR0BvPQ1zhgmaaAdNmQFoCEdAkQgE03wTd3V9lChoBkdAcXgpQUHpr2gHTSsBaAhHQJEJSfqX4TN1fZQoaAZHQHENSLdepn9oB01SAWgIR0CRCrktVaOhdX2UKGgGR0BtAyFyq+8HaAdNRwFoCEdAkQxWTHKfWnV9lChoBkdAbwWciGFi8WgHTTECaAhHQJEOwxsVLzx1fZQoaAZHv/47uDzyz5ZoB0vlaAhHQJEPwYqG1x91fZQoaAZHQHCenUx20RhoB02HAWgIR0CREbMUypJgdX2UKGgGR0BxOKOtGNJfaAdNXgFoCEdAkRNJtzjm0XV9lChoBkdAcJsSzgMtsmgHTR0BaAhHQJEUiEf1Yhd1fZQoaAZHQHDvDUVi4KBoB002AWgIR0CRFiVBD5TIdX2UKGgGR0Bvu/HzYmLMaAdNqQNoCEdAkRotIPK+z3V9lChoBkdAJdFBppN9IGgHS95oCEdAkRthBVuJlHV9lChoBkdAccx8YAKfF2gHTQEBaAhHQJEcfOVxCIF1fZQoaAZHQGCGqYJE6T5oB03oA2gIR0CRIQ94NZvDdX2UKGgGR0BwEgZDRc/uaAdNjAJoCEdAkSQeEM9bHXV9lChoBkdAPuRH09QoC2gHS99oCEdAkSUUbPyCnXV9lChoBkdAcBfyULUkOmgHS+xoCEdAkSYX+IdlunV9lChoBkdAcTcM1jy4F2gHTQcBaAhHQJEnPi83+/B1fZQoaAZHwA/Q2MsH0K9oB0vKaAhHQJEoHIo3Jgd1fZQoaAZHQHA9k7Sy+pRoB014AWgIR0CRKfjcEeQudX2UKGgGR0Bw6JN47ihnaAdL4GgIR0CRKvH6/IsAdX2UKGgGR0BHooT4+KTCaAdL0WgIR0CRK9hLoOhCdX2UKGgGR0Bvcph4MWoFaAdNGAFoCEdAkS1IUSIxg3V9lChoBkdAadN5N47ihmgHTUYBaAhHQJEur2tdRix1fZQoaAZHwACskIHC4z9oB0vgaAhHQJEvoyAQQMB1fZQoaAZHQG6BYKQaJhxoB01DAWgIR0CRMQcc2itadX2UKGgGR0BtAtoWYWtVaAdNZAFoCEdAkTLKWHDaXnV9lChoBkdAbCm3QUpNK2gHTQ4BaAhHQJEz8Lv1DjR1fZQoaAZHQG4UQG4ZuQ9oB00zAWgIR0CRNUJZ4fOldX2UKGgGR0Bo2ZtHhCMQaAdNBgJoCEdAkTfTc6/7BXV9lChoBkdAbVPkCmuTzWgHTRABaAhHQJE4+e9SMtN1fZQoaAZHQEvj+KjzqbBoB0v+aAhHQJE6DOPeYUp1fZQoaAZHQG8V3974SHxoB00kAWgIR0CRO4T0g8r7dX2UKGgGR0Bw7/IGQjlgaAdNKQFoCEdAkTzYSUTtcHV9lChoBkdAbYdpcHGCI2gHTVQBaAhHQJE+XZHuqm11fZQoaAZHQHCig9V3ljpoB00PAWgIR0CRP659E1EWdX2UKGgGR0BwjdRUFSsKaAdNPAFoCEdAkUFGuTzNEHV9lChoBkdAcJw7wazeGmgHTQkBaAhHQJFCbyLAHml1fZQoaAZHQHCFO40/GERoB016AmgIR0CRRW0ZWJaadX2UKGgGR0BxSZ3np0OmaAdNMAFoCEdAkUbzwMH8j3V9lChoBkfARfCuSwGGEmgHS+9oCEdAkUgL8zhxYXV9lChoBkfAGEXQ+lj3EmgHS9RoCEdAkUjsqOLiuXV9lChoBkdAb4TjZL7GemgHTRgDaAhHQJFMoIC2c8V1fZQoaAZHP+Cj4593KSxoB0vraAhHQJFNpNWU8mt1fZQoaAZHwEswALApKBdoB0v8aAhHQJFO/kDIRyx1fZQoaAZHwESAvQnhKlJoB0u7aAhHQJFPz+yZ8a51fZQoaAZHQG+AMAFPi1loB00hAWgIR0CRUTr2g398dX2UKGgGR0BsGFs3yZrpaAdN2AFoCEdAkVN/A44p+nV9lChoBkdAarQIu5BkZ2gHTVoBaAhHQJFU+zt1IRR1fZQoaAZHQHFnAwoLG71oB00CAWgIR0CRVhWXC0ngdX2UKGgGR0AeGSmqHXVcaAdL1mgIR0CRVwI+nqFAdX2UKGgGR0BAnc580DU3aAdL2mgIR0CRWCbADaGpdX2UKGgGR0Bv7PxWkrPMaAdNuwFoCEdAkVoIxxkupXV9lChoBkdAbtlAJswcpGgHTdYBaAhHQJFcD9hqj8F1fZQoaAZHQFwpxh2GIsRoB03oA2gIR0CRYJVbiZOSdX2UKGgGR0AoANQTEit8aAdLxmgIR0CRYaSPU8V6dX2UKGgGR0Bv9ZVsDW9UaAdNqQFoCEdAkWNxmXgLqnV9lChoBkfAPTUpiI+GGmgHTQ8BaAhHQJFkm+PBBRh1fZQoaAZHQG2jTJZGKAJoB002AWgIR0CRZjvPC2tudX2UKGgGR0BsqXKEFnqWaAdNRQFoCEdAkWenV09yLnV9lChoBkdAXQGxZ+x4ZGgHTegDaAhHQJFsPgaWHDd1fZQoaAZHQCCVGI9C/oJoB0vGaAhHQJFtGJemelN1fZQoaAZHQF/qyCWeHzpoB03oA2gIR0CRcbtXgccVdX2UKGgGR0BwMuQuEmICaAdNPgFoCEdAkXMbX+VC5XV9lChoBkdAcM9X4CZF5WgHTUQBaAhHQJF0t8x9G7V1fZQoaAZHwD6d0+1SflJoB0vzaAhHQJF1w7cO9WZ1fZQoaAZHQFzXTn7pFCtoB03oA2gIR0CRemFhXr+pdX2UKGgGR0BQAwfhddE9aAdN6ANoCEdAkX7+fh/AkHV9lChoBkdAcEzt03fhuWgHTSkBaAhHQJGASF/QSjB1fZQoaAZHQHCvdugpSaVoB00pAWgIR0CRgccH4XXRdX2UKGgGR0Ax9EOy3Td+aAdL12gIR0CRgraXa8HwdX2UKGgGR0Bvf+APNFBqaAdNMgFoCEdAkYQE3bVSXXV9lChoBkfAE6qFh5PdmGgHTRgBaAhHQJGFOBkI5YJ1fZQoaAZHP9jD+BH09QpoB0u9aAhHQJGGB5kbxVh1fZQoaAZHQGsZefh/Aj9oB01ZA2gIR0CRieTJQtSRdX2UKGgGR0Bvy70rbxmTaAdNGQFoCEdAkYtQ5Jbt7nV9lChoBkdAcIDAPd2xIWgHS/poCEdAkYxkBCD28XV9lChoBkdAQXh/G2kSEmgHS/1oCEdAkY14M4LkS3V9lChoBkdAcAKYcNpdr2gHTZIBaAhHQJGPOkvboKV1fZQoaAZHQGny+RHPNV1oB00XAmgIR0CRke3Roh6jdX2UKGgGR8AvN48EFGG3aAdNFQFoCEdAkZMfI8yN43V9lChoBkdAb0UMWoFV1mgHTckBaAhHQJGVZnuiN851fZQoaAZHQG0G4ptrKvFoB02DAWgIR0CRlxgCwKSgdX2UKGgGR8A5ajKPn0TUaAdL+mgIR0CRmCsSCe3AdX2UKGgGR0BsQqzZ6D5CaAdNdAFoCEdAkZoCuMdcS3V9lChoBkfAMl5N47ihnWgHS+ZoCEdAkZsBESdvsXV9lChoBkdAcRRD+zdDY2gHTQoCaAhHQJGdR0U47zV1fZQoaAZHQGloVgYxcmloB00yAWgIR0CRns/yGzrvdX2UKGgGR0BwAlwuM+/yaAdNvQFoCEdAkaC7SiM5wXV9lChoBkfASW3bj94u9WgHTSgBaAhHQJGh/qkdmxt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQcSKyS4i22YqhcKXLwrLCe4wDaW5jlIoQ7XV38Tw2V2pTx6uiyRpoE3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 68.6162156, "std_reward": 121.40739824665282, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T21:38:56.248369"}
|