octipuw commited on
Commit
4c66e98
1 Parent(s): bebfb4a

my first RL!

Browse files
LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7fd34a49dbe80272db72c126b13eb63ca5b971ba3d05c2220e4c27071e0db68
3
- size 145987
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6817cca93a34bb62a959fb666cf0b370a8270e693615128f478cfdf68a725e1a
3
+ size 146305
LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12f67580d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12f6758160>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12f67581f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12f6758280>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f12f6758310>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f12f67583a0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12f6758430>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12f67584c0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f12f6758550>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12f67585e0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12f6758670>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12f6758700>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f12f6942700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1686797513996268308,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": null,
33
  "_last_episode_starts": {
34
  ":type:": "<class 'numpy.ndarray'>",
35
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
36
  },
37
  "_last_original_obs": null,
38
  "_episode_num": 0,
39
  "use_sde": false,
40
  "sde_sample_freq": -1,
41
- "_current_progress_remaining": -0.015808000000000044,
42
  "_stats_window_size": 100,
43
  "ep_info_buffer": {
44
  ":type:": "<class 'collections.deque'>",
45
- ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL4s9KVY6qMAWyUTRcBjAF0lEdAkhIp1A7gbnV9lChoBkdAcXgKEnLJS2gHTS0BaAhHQJIUB06o2n91fZQoaAZHQHIOIkRjBmBoB003AWgIR0CSFOtuUD+zdX2UKGgGR0BwOEmShakiaAdNLQFoCEdAkhUA482aUnV9lChoBkdAcHW20zCUHWgHTRkBaAhHQJIVYRChN/R1fZQoaAZHQG5FhbOeJ55oB00KAWgIR0CSFeOxjawmdX2UKGgGR0Bx8sJPZZjhaAdNDAFoCEdAkhbyxZ+x4nV9lChoBkdAc15eGO+7DmgHTRQBaAhHQJIW8Ygq3E11fZQoaAZHQHACKAJ9iMJoB00GAWgIR0CSF0dhAnlXdX2UKGgGR0Bsv2gDifg8aAdNBAFoCEdAkhdJHI6sAHV9lChoBkdAb6SM1jy4F2gHTQgBaAhHQJIXyJ3xFy91fZQoaAZHQEzfdj5KvmpoB0vgaAhHQJIYTCoCMgl1fZQoaAZHQHN0drTH80loB00hAWgIR0CSGJvF3pwCdX2UKGgGR0BwI0Z75VOsaAdNJwFoCEdAkhixW1c+q3V9lChoBkdAcTXXzlLeymgHTS4BaAhHQJIaANMGorF1fZQoaAZHQG9H+HJtBOZoB01AAWgIR0CSG0HRTjvNdX2UKGgGR0BxNV4fOlfraAdNDQFoCEdAkhvC3ocJdHV9lChoBkdAblMVbiZOSGgHS/toCEdAkhwLgbZOBXV9lChoBkdAclmTDO1OTWgHS/poCEdAkhwUwJw84nV9lChoBkdAbK2D9Oymh2gHTQwBaAhHQJIc63DvVmV1fZQoaAZHQHMMjr7fpEBoB00UAWgIR0CSHaN3W4EwdX2UKGgGR0BufmJSBK+SaAdNCwFoCEdAkh6/9YOlPHV9lChoBkdAchDji4rjHWgHS/hoCEdAkh7A1WKdhHV9lChoBkdAcvUBE8aGYmgHTS4BaAhHQJIffCwbEP11fZQoaAZHQHLwTh1klNVoB0v9aAhHQJIf7s0HhS91fZQoaAZHQHNTENayKN1oB00WAWgIR0CSID5RTCLudX2UKGgGR0Byf9YYBNmEaAdNSAFoCEdAkiCj850bLnV9lChoBkdAcRC/Q0GeMGgHTR4BaAhHQJIg2LUCq6x1fZQoaAZHQHGazTrmhdtoB00gAWgIR0CSIpbYK6WgdX2UKGgGR0Byb+NgjQiSaAdNBAFoCEdAkiMfxMFlkHV9lChoBkdAb8c/Dcdo4GgHTQkBaAhHQJIkR86V+ql1fZQoaAZHQHDBz4+KTB9oB00RAWgIR0CSJH5uqFRHdX2UKGgGR0BzSOplz2eyaAdNIgFoCEdAkiSxPO6d2HV9lChoBkdAcJzWAwwj+2gHTeoBaAhHQJIlhmukk8l1fZQoaAZHQHBblqzqrzZoB0v+aAhHQJIlrsHB1tB1fZQoaAZHQGAZdLxqfvpoB03oA2gIR0CSJgWGyon8dX2UKGgGR0BxJgWVNYbLaAdNAwFoCEdAkibxp1zQu3V9lChoBkdAb1lcY64lQmgHTQUBaAhHQJInALXtjTd1fZQoaAZHQHAPPetSydFoB0v+aAhHQJInddD6WPd1fZQoaAZHQHIAatHQQcxoB0vvaAhHQJInuvdM0xd1fZQoaAZHQHGW5byH2ytoB002AWgIR0CSPqldTo+wdX2UKGgGR0By6I+FDfFaaAdNtwFoCEdAkj+kKzAvc3V9lChoBkdAcU/wyIpH7WgHTTYBaAhHQJI/pzuF6Ax1fZQoaAZHQHGQ3QUpNK1oB01CAWgIR0CSP85ksjFAdX2UKGgGR0Bte9OKwY+CaAdNAAFoCEdAkkAgv+OwPnV9lChoBkdAcpYmO2iL22gHS+hoCEdAkkBjwlSjxnV9lChoBkdAcbD7CBPKuGgHTQIBaAhHQJJBfKgZjx11fZQoaAZHQGwkMTewcHZoB01IAWgIR0CSQa+yJKradX2UKGgGR0BwvUdaMaS+aAdNAAFoCEdAkkIpWV/tpnV9lChoBkdAcQJC7sfJWGgHS/toCEdAkkJzNyHVPXV9lChoBkdAcSWhN/OMVGgHTRMBaAhHQJJC1GViWmh1fZQoaAZHQG2cni3ocJdoB00QAWgIR0CSQ/RDTjNqdX2UKGgGR0BwqCHk92X+aAdL+mgIR0CSRBKb8WKudX2UKGgGR0ByuEfq5byIaAdNCAFoCEdAkkQ02gnMMnV9lChoBkdAcc5lEqlP8GgHTZABaAhHQJJFQksz2vl1fZQoaAZHQHPrx64UeuFoB01CAWgIR0CSRUq3VkMDdX2UKGgGR0Bt0IDPnjhlaAdL+mgIR0CSRnj+717IdX2UKGgGR0ByYghJRO1waAdNDAFoCEdAkkb4TXarWHV9lChoBkdAbveR6F/QSmgHTRoBaAhHQJJHhIAfdRB1fZQoaAZHQHL0ANb1RLtoB009AWgIR0CSR4KDkELZdX2UKGgGR0Bx0ddrwe/6aAdNBQFoCEdAkkeLwWnCO3V9lChoBkdAcpVSb6P8ymgHTSwBaAhHQJJIQ7jkuHx1fZQoaAZHQHD6/pD/lyRoB00QAWgIR0CSSMcp9ZzQdX2UKGgGR0BylZ5yEL6UaAdNDQFoCEdAkkjbTDwYtXV9lChoBkdAcYyjm0VrRGgHS/VoCEdAkkjyYw7DEXV9lChoBkdAcwngf2bobGgHTTsBaAhHQJJKgQe3hGZ1fZQoaAZHQHHp0T6BRQ9oB00mAWgIR0CSSpjnV5KOdX2UKGgGR0BzchtIkJKKaAdNIgFoCEdAkkuZEhJRO3V9lChoBkdAcKqpobn5i2gHS/xoCEdAkkvWxlg+hXV9lChoBkdAbT+e7L+xW2gHTSsBaAhHQJJMFvHcUM51fZQoaAZHQFJbxI8QqZtoB0u/aAhHQJJMedhAnlZ1fZQoaAZHQHHDuhPCVKRoB00iAWgIR0CSTOMNc4YKdX2UKGgGR0B0Nn1g6U7kaAdNbQFoCEdAkk2/F72L53V9lChoBkdAclEtPHktE2gHS/9oCEdAkk239itq6HV9lChoBkdAcfs+IuXeFmgHS+5oCEdAkk3G6kIomXV9lChoBkdAbHGzpHI6sGgHTR8BaAhHQJJODs6aLGd1fZQoaAZHQG/CwMhHLA5oB00nAWgIR0CSTzhN/OMVdX2UKGgGR0Bxzj4HoouxaAdL+mgIR0CST1vnr6cidX2UKGgGR0Bv11Y4hllLaAdNFQFoCEdAkk99ihFmWnV9lChoBkdAb/vh1klNUWgHTTQBaAhHQJJREqqfe1t1fZQoaAZHQHFIZcLSeAdoB01FAWgIR0CSUXJCBwuNdX2UKGgGR0ByEDSNOuaGaAdNEgFoCEdAklHkSqU/wHV9lChoBkdAcp1aUiY9gWgHTQgBaAhHQJJSo0m+j/N1fZQoaAZHQG3RWBas6q9oB002AWgIR0CSUtO/cnE3dX2UKGgGR0ByO9sHjZL7aAdNCgFoCEdAklQyJsO5KHV9lChoBkdAcwLoCuEEkmgHTTkBaAhHQJJUcmlZX+51fZQoaAZHQHGW7O7g88toB00OAWgIR0CSVVgL7XQMdX2UKGgGR0Bw7fbcoH9naAdNFAFoCEdAklV4DoyKvXV9lChoBkdAcbTyH2ys0mgHTQwBaAhHQJJVplDneSB1fZQoaAZHQHCqpoXbdrRoB00EAWgIR0CSVwNDMNc4dX2UKGgGR0BwEuAMDwH8aAdL/mgIR0CSVwWcBltkdX2UKGgGR0BwN7vmYBvKaAdNCAFoCEdAklcAv6CUYHV9lChoBkdAcxDflp48l2gHTUYBaAhHQJJXF0NjLB91fZQoaAZHQG+wtthuwX9oB02VAWgIR0CSV41HvttzdX2UKGgGR0BPG+PRzBAOaAdLxGgIR0CSV89JjDsMdX2UKGgGR0BJEPzFuNxVaAdLumgIR0CSWFuOjqOcdX2UKGgGR0Bwt9k+X7cgaAdNwgFoCEdAklkHuy/sV3V9lChoBkdAbmETV2A5JmgHTSEBaAhHQJJZY3DNyHV1fZQoaAZHQHM0CaNMoMNoB00gAWgIR0CSWa1mJ3xGdX2UKGgGR0BwyQZP2wmmaAdNFAFoCEdAklpqBiCrcXVlLg=="
46
  },
47
  "ep_success_buffer": {
48
  ":type:": "<class 'collections.deque'>",
49
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
50
  },
51
- "_n_updates": 256,
52
  "observation_space": {
53
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
54
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
55
  "dtype": "float32",
56
  "bounded_below": "[ True True True True True True True True]",
57
  "bounded_above": "[ True True True True True True True True]",
@@ -62,7 +62,7 @@
62
  "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
63
  "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
64
  "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
65
- "_np_random": null
66
  },
67
  "action_space": {
68
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
@@ -80,17 +80,17 @@
80
  "ent_coef": 0.01,
81
  "vf_coef": 0.5,
82
  "max_grad_norm": 0.5,
83
- "batch_size": 64,
84
  "n_epochs": 4,
85
  "clip_range": {
86
  ":type:": "<class 'function'>",
87
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
88
  },
89
  "clip_range_vf": null,
90
  "normalize_advantage": true,
91
  "target_kl": null,
92
  "lr_schedule": {
93
  ":type:": "<class 'function'>",
94
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
  }
96
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3b583b130>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3b583b1c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3b583b250>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3b583b2e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa3b583b370>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa3b583b400>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa3b583b490>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3b583b520>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa3b583b5b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3b583b640>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3b583b6d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3b583b760>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa3b5833380>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1686796064647751043,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": null,
33
  "_last_episode_starts": {
34
  ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
36
  },
37
  "_last_original_obs": null,
38
  "_episode_num": 0,
39
  "use_sde": false,
40
  "sde_sample_freq": -1,
41
+ "_current_progress_remaining": -0.00044800000000000395,
42
  "_stats_window_size": 100,
43
  "ep_info_buffer": {
44
  ":type:": "<class 'collections.deque'>",
45
+ ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuzQmeDnOMAWyUTQsBjAF0lEdAkPr+HnEET3V9lChoBkfAOD+K4x1xKmgHS9ZoCEdAkPvtCE6DG3V9lChoBkdAcKWj+aScLGgHTQEBaAhHQJD9BI8QqZt1fZQoaAZHQHERaQ3gk1NoB00lAWgIR0CQ/kfZmI0qdX2UKGgGR8BIJjhcZ9/jaAdNEQFoCEdAkP+wSvkilnV9lChoBkdAcIzd56dDpmgHTfgBaAhHQJEB4WN3np11fZQoaAZHQCMhTn7pFCtoB0u+aAhHQJECtDF6zE91fZQoaAZHwDNcfgaWHDdoB0vHaAhHQJEDxigCfYl1fZQoaAZHv7mo73fyf+VoB0vWaAhHQJEEsGY8dPt1fZQoaAZHQGv6o4lyBCloB01LAWgIR0CRBhdWQwK0dX2UKGgGR0BvPQ1zhgmaaAdNmQFoCEdAkQgE03wTd3V9lChoBkdAcXgpQUHpr2gHTSsBaAhHQJEJSfqX4TN1fZQoaAZHQHENSLdepn9oB01SAWgIR0CRCrktVaOhdX2UKGgGR0BtAyFyq+8HaAdNRwFoCEdAkQxWTHKfWnV9lChoBkdAbwWciGFi8WgHTTECaAhHQJEOwxsVLzx1fZQoaAZHv/47uDzyz5ZoB0vlaAhHQJEPwYqG1x91fZQoaAZHQHCenUx20RhoB02HAWgIR0CREbMUypJgdX2UKGgGR0BxOKOtGNJfaAdNXgFoCEdAkRNJtzjm0XV9lChoBkdAcJsSzgMtsmgHTR0BaAhHQJEUiEf1Yhd1fZQoaAZHQHDvDUVi4KBoB002AWgIR0CRFiVBD5TIdX2UKGgGR0Bvu/HzYmLMaAdNqQNoCEdAkRotIPK+z3V9lChoBkdAJdFBppN9IGgHS95oCEdAkRthBVuJlHV9lChoBkdAccx8YAKfF2gHTQEBaAhHQJEcfOVxCIF1fZQoaAZHQGCGqYJE6T5oB03oA2gIR0CRIQ94NZvDdX2UKGgGR0BwEgZDRc/uaAdNjAJoCEdAkSQeEM9bHXV9lChoBkdAPuRH09QoC2gHS99oCEdAkSUUbPyCnXV9lChoBkdAcBfyULUkOmgHS+xoCEdAkSYX+IdlunV9lChoBkdAcTcM1jy4F2gHTQcBaAhHQJEnPi83+/B1fZQoaAZHwA/Q2MsH0K9oB0vKaAhHQJEoHIo3Jgd1fZQoaAZHQHA9k7Sy+pRoB014AWgIR0CRKfjcEeQudX2UKGgGR0Bw6JN47ihnaAdL4GgIR0CRKvH6/IsAdX2UKGgGR0BHooT4+KTCaAdL0WgIR0CRK9hLoOhCdX2UKGgGR0Bvcph4MWoFaAdNGAFoCEdAkS1IUSIxg3V9lChoBkdAadN5N47ihmgHTUYBaAhHQJEur2tdRix1fZQoaAZHwACskIHC4z9oB0vgaAhHQJEvoyAQQMB1fZQoaAZHQG6BYKQaJhxoB01DAWgIR0CRMQcc2itadX2UKGgGR0BtAtoWYWtVaAdNZAFoCEdAkTLKWHDaXnV9lChoBkdAbCm3QUpNK2gHTQ4BaAhHQJEz8Lv1DjR1fZQoaAZHQG4UQG4ZuQ9oB00zAWgIR0CRNUJZ4fOldX2UKGgGR0Bo2ZtHhCMQaAdNBgJoCEdAkTfTc6/7BXV9lChoBkdAbVPkCmuTzWgHTRABaAhHQJE4+e9SMtN1fZQoaAZHQEvj+KjzqbBoB0v+aAhHQJE6DOPeYUp1fZQoaAZHQG8V3974SHxoB00kAWgIR0CRO4T0g8r7dX2UKGgGR0Bw7/IGQjlgaAdNKQFoCEdAkTzYSUTtcHV9lChoBkdAbYdpcHGCI2gHTVQBaAhHQJE+XZHuqm11fZQoaAZHQHCig9V3ljpoB00PAWgIR0CRP659E1EWdX2UKGgGR0BwjdRUFSsKaAdNPAFoCEdAkUFGuTzNEHV9lChoBkdAcJw7wazeGmgHTQkBaAhHQJFCbyLAHml1fZQoaAZHQHCFO40/GERoB016AmgIR0CRRW0ZWJaadX2UKGgGR0BxSZ3np0OmaAdNMAFoCEdAkUbzwMH8j3V9lChoBkfARfCuSwGGEmgHS+9oCEdAkUgL8zhxYXV9lChoBkfAGEXQ+lj3EmgHS9RoCEdAkUjsqOLiuXV9lChoBkdAb4TjZL7GemgHTRgDaAhHQJFMoIC2c8V1fZQoaAZHP+Cj4593KSxoB0vraAhHQJFNpNWU8mt1fZQoaAZHwEswALApKBdoB0v8aAhHQJFO/kDIRyx1fZQoaAZHwESAvQnhKlJoB0u7aAhHQJFPz+yZ8a51fZQoaAZHQG+AMAFPi1loB00hAWgIR0CRUTr2g398dX2UKGgGR0BsGFs3yZrpaAdN2AFoCEdAkVN/A44p+nV9lChoBkdAarQIu5BkZ2gHTVoBaAhHQJFU+zt1IRR1fZQoaAZHQHFnAwoLG71oB00CAWgIR0CRVhWXC0ngdX2UKGgGR0AeGSmqHXVcaAdL1mgIR0CRVwI+nqFAdX2UKGgGR0BAnc580DU3aAdL2mgIR0CRWCbADaGpdX2UKGgGR0Bv7PxWkrPMaAdNuwFoCEdAkVoIxxkupXV9lChoBkdAbtlAJswcpGgHTdYBaAhHQJFcD9hqj8F1fZQoaAZHQFwpxh2GIsRoB03oA2gIR0CRYJVbiZOSdX2UKGgGR0AoANQTEit8aAdLxmgIR0CRYaSPU8V6dX2UKGgGR0Bv9ZVsDW9UaAdNqQFoCEdAkWNxmXgLqnV9lChoBkfAPTUpiI+GGmgHTQ8BaAhHQJFkm+PBBRh1fZQoaAZHQG2jTJZGKAJoB002AWgIR0CRZjvPC2tudX2UKGgGR0BsqXKEFnqWaAdNRQFoCEdAkWenV09yLnV9lChoBkdAXQGxZ+x4ZGgHTegDaAhHQJFsPgaWHDd1fZQoaAZHQCCVGI9C/oJoB0vGaAhHQJFtGJemelN1fZQoaAZHQF/qyCWeHzpoB03oA2gIR0CRcbtXgccVdX2UKGgGR0BwMuQuEmICaAdNPgFoCEdAkXMbX+VC5XV9lChoBkdAcM9X4CZF5WgHTUQBaAhHQJF0t8x9G7V1fZQoaAZHwD6d0+1SflJoB0vzaAhHQJF1w7cO9WZ1fZQoaAZHQFzXTn7pFCtoB03oA2gIR0CRemFhXr+pdX2UKGgGR0BQAwfhddE9aAdN6ANoCEdAkX7+fh/AkHV9lChoBkdAcEzt03fhuWgHTSkBaAhHQJGASF/QSjB1fZQoaAZHQHCvdugpSaVoB00pAWgIR0CRgccH4XXRdX2UKGgGR0Ax9EOy3Td+aAdL12gIR0CRgraXa8HwdX2UKGgGR0Bvf+APNFBqaAdNMgFoCEdAkYQE3bVSXXV9lChoBkfAE6qFh5PdmGgHTRgBaAhHQJGFOBkI5YJ1fZQoaAZHP9jD+BH09QpoB0u9aAhHQJGGB5kbxVh1fZQoaAZHQGsZefh/Aj9oB01ZA2gIR0CRieTJQtSRdX2UKGgGR0Bvy70rbxmTaAdNGQFoCEdAkYtQ5Jbt7nV9lChoBkdAcIDAPd2xIWgHS/poCEdAkYxkBCD28XV9lChoBkdAQXh/G2kSEmgHS/1oCEdAkY14M4LkS3V9lChoBkdAcAKYcNpdr2gHTZIBaAhHQJGPOkvboKV1fZQoaAZHQGny+RHPNV1oB00XAmgIR0CRke3Roh6jdX2UKGgGR8AvN48EFGG3aAdNFQFoCEdAkZMfI8yN43V9lChoBkdAb0UMWoFV1mgHTckBaAhHQJGVZnuiN851fZQoaAZHQG0G4ptrKvFoB02DAWgIR0CRlxgCwKSgdX2UKGgGR8A5ajKPn0TUaAdL+mgIR0CRmCsSCe3AdX2UKGgGR0BsQqzZ6D5CaAdNdAFoCEdAkZoCuMdcS3V9lChoBkfAMl5N47ihnWgHS+ZoCEdAkZsBESdvsXV9lChoBkdAcRRD+zdDY2gHTQoCaAhHQJGdR0U47zV1fZQoaAZHQGloVgYxcmloB00yAWgIR0CRns/yGzrvdX2UKGgGR0BwAlwuM+/yaAdNvQFoCEdAkaC7SiM5wXV9lChoBkfASW3bj94u9WgHTSgBaAhHQJGh/qkdmxt1ZS4="
46
  },
47
  "ep_success_buffer": {
48
  ":type:": "<class 'collections.deque'>",
49
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
50
  },
51
+ "_n_updates": 7816,
52
  "observation_space": {
53
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
54
+ ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQcSKyS4i22YqhcKXLwrLCe4wDaW5jlIoQ7XV38Tw2V2pTx6uiyRpoE3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
55
  "dtype": "float32",
56
  "bounded_below": "[ True True True True True True True True]",
57
  "bounded_above": "[ True True True True True True True True]",
 
62
  "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
63
  "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
64
  "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
65
+ "_np_random": "Generator(PCG64)"
66
  },
67
  "action_space": {
68
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
 
80
  "ent_coef": 0.01,
81
  "vf_coef": 0.5,
82
  "max_grad_norm": 0.5,
83
+ "batch_size": 512,
84
  "n_epochs": 4,
85
  "clip_range": {
86
  ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
88
  },
89
  "clip_range_vf": null,
90
  "normalize_advantage": true,
91
  "target_kl": null,
92
  "lr_schedule": {
93
  ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
95
  }
96
  }
LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b1efc6f7703916a104d0cec926215dc7498c1962ac0d81498f1aad6547c2468
3
  size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d27c8ebdf602e6ecd1c8c75b9fe4077d8fd463cd416cd39ce3db5ab5eda930c3
3
  size 88057
LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbca7d55e4f09d5f8288816716aa1a13d4758d55d67694bd52bd2eaf1d4ba4da
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55cd0fa04344c5559d0364e0af715032276cf6a1f16dad113e39a0f58c92fd4a
3
  size 43329
LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
- - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
- - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2
2
+ - Python: 3.10.9
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: PPO
10
  results:
11
  - task:
12
  type: reinforcement-learning
@@ -16,13 +16,13 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 256.80 +/- 23.96
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **PPO** Agent playing **LunarLander-v2**
25
- This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: PP)
10
  results:
11
  - task:
12
  type: reinforcement-learning
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 68.62 +/- 121.41
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PP)** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PP)** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12f67580d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12f6758160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12f67581f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12f6758280>", "_build": "<function ActorCriticPolicy._build at 0x7f12f6758310>", "forward": "<function ActorCriticPolicy.forward at 0x7f12f67583a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f12f6758430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12f67584c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12f6758550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12f67585e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12f6758670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12f6758700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f12f6942700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686797513996268308, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL4s9KVY6qMAWyUTRcBjAF0lEdAkhIp1A7gbnV9lChoBkdAcXgKEnLJS2gHTS0BaAhHQJIUB06o2n91fZQoaAZHQHIOIkRjBmBoB003AWgIR0CSFOtuUD+zdX2UKGgGR0BwOEmShakiaAdNLQFoCEdAkhUA482aUnV9lChoBkdAcHW20zCUHWgHTRkBaAhHQJIVYRChN/R1fZQoaAZHQG5FhbOeJ55oB00KAWgIR0CSFeOxjawmdX2UKGgGR0Bx8sJPZZjhaAdNDAFoCEdAkhbyxZ+x4nV9lChoBkdAc15eGO+7DmgHTRQBaAhHQJIW8Ygq3E11fZQoaAZHQHACKAJ9iMJoB00GAWgIR0CSF0dhAnlXdX2UKGgGR0Bsv2gDifg8aAdNBAFoCEdAkhdJHI6sAHV9lChoBkdAb6SM1jy4F2gHTQgBaAhHQJIXyJ3xFy91fZQoaAZHQEzfdj5KvmpoB0vgaAhHQJIYTCoCMgl1fZQoaAZHQHN0drTH80loB00hAWgIR0CSGJvF3pwCdX2UKGgGR0BwI0Z75VOsaAdNJwFoCEdAkhixW1c+q3V9lChoBkdAcTXXzlLeymgHTS4BaAhHQJIaANMGorF1fZQoaAZHQG9H+HJtBOZoB01AAWgIR0CSG0HRTjvNdX2UKGgGR0BxNV4fOlfraAdNDQFoCEdAkhvC3ocJdHV9lChoBkdAblMVbiZOSGgHS/toCEdAkhwLgbZOBXV9lChoBkdAclmTDO1OTWgHS/poCEdAkhwUwJw84nV9lChoBkdAbK2D9Oymh2gHTQwBaAhHQJIc63DvVmV1fZQoaAZHQHMMjr7fpEBoB00UAWgIR0CSHaN3W4EwdX2UKGgGR0BufmJSBK+SaAdNCwFoCEdAkh6/9YOlPHV9lChoBkdAchDji4rjHWgHS/hoCEdAkh7A1WKdhHV9lChoBkdAcvUBE8aGYmgHTS4BaAhHQJIffCwbEP11fZQoaAZHQHLwTh1klNVoB0v9aAhHQJIf7s0HhS91fZQoaAZHQHNTENayKN1oB00WAWgIR0CSID5RTCLudX2UKGgGR0Byf9YYBNmEaAdNSAFoCEdAkiCj850bLnV9lChoBkdAcRC/Q0GeMGgHTR4BaAhHQJIg2LUCq6x1fZQoaAZHQHGazTrmhdtoB00gAWgIR0CSIpbYK6WgdX2UKGgGR0Byb+NgjQiSaAdNBAFoCEdAkiMfxMFlkHV9lChoBkdAb8c/Dcdo4GgHTQkBaAhHQJIkR86V+ql1fZQoaAZHQHDBz4+KTB9oB00RAWgIR0CSJH5uqFRHdX2UKGgGR0BzSOplz2eyaAdNIgFoCEdAkiSxPO6d2HV9lChoBkdAcJzWAwwj+2gHTeoBaAhHQJIlhmukk8l1fZQoaAZHQHBblqzqrzZoB0v+aAhHQJIlrsHB1tB1fZQoaAZHQGAZdLxqfvpoB03oA2gIR0CSJgWGyon8dX2UKGgGR0BxJgWVNYbLaAdNAwFoCEdAkibxp1zQu3V9lChoBkdAb1lcY64lQmgHTQUBaAhHQJInALXtjTd1fZQoaAZHQHAPPetSydFoB0v+aAhHQJInddD6WPd1fZQoaAZHQHIAatHQQcxoB0vvaAhHQJInuvdM0xd1fZQoaAZHQHGW5byH2ytoB002AWgIR0CSPqldTo+wdX2UKGgGR0By6I+FDfFaaAdNtwFoCEdAkj+kKzAvc3V9lChoBkdAcU/wyIpH7WgHTTYBaAhHQJI/pzuF6Ax1fZQoaAZHQHGQ3QUpNK1oB01CAWgIR0CSP85ksjFAdX2UKGgGR0Bte9OKwY+CaAdNAAFoCEdAkkAgv+OwPnV9lChoBkdAcpYmO2iL22gHS+hoCEdAkkBjwlSjxnV9lChoBkdAcbD7CBPKuGgHTQIBaAhHQJJBfKgZjx11fZQoaAZHQGwkMTewcHZoB01IAWgIR0CSQa+yJKradX2UKGgGR0BwvUdaMaS+aAdNAAFoCEdAkkIpWV/tpnV9lChoBkdAcQJC7sfJWGgHS/toCEdAkkJzNyHVPXV9lChoBkdAcSWhN/OMVGgHTRMBaAhHQJJC1GViWmh1fZQoaAZHQG2cni3ocJdoB00QAWgIR0CSQ/RDTjNqdX2UKGgGR0BwqCHk92X+aAdL+mgIR0CSRBKb8WKudX2UKGgGR0ByuEfq5byIaAdNCAFoCEdAkkQ02gnMMnV9lChoBkdAcc5lEqlP8GgHTZABaAhHQJJFQksz2vl1fZQoaAZHQHPrx64UeuFoB01CAWgIR0CSRUq3VkMDdX2UKGgGR0Bt0IDPnjhlaAdL+mgIR0CSRnj+717IdX2UKGgGR0ByYghJRO1waAdNDAFoCEdAkkb4TXarWHV9lChoBkdAbveR6F/QSmgHTRoBaAhHQJJHhIAfdRB1fZQoaAZHQHL0ANb1RLtoB009AWgIR0CSR4KDkELZdX2UKGgGR0Bx0ddrwe/6aAdNBQFoCEdAkkeLwWnCO3V9lChoBkdAcpVSb6P8ymgHTSwBaAhHQJJIQ7jkuHx1fZQoaAZHQHD6/pD/lyRoB00QAWgIR0CSSMcp9ZzQdX2UKGgGR0BylZ5yEL6UaAdNDQFoCEdAkkjbTDwYtXV9lChoBkdAcYyjm0VrRGgHS/VoCEdAkkjyYw7DEXV9lChoBkdAcwngf2bobGgHTTsBaAhHQJJKgQe3hGZ1fZQoaAZHQHHp0T6BRQ9oB00mAWgIR0CSSpjnV5KOdX2UKGgGR0BzchtIkJKKaAdNIgFoCEdAkkuZEhJRO3V9lChoBkdAcKqpobn5i2gHS/xoCEdAkkvWxlg+hXV9lChoBkdAbT+e7L+xW2gHTSsBaAhHQJJMFvHcUM51fZQoaAZHQFJbxI8QqZtoB0u/aAhHQJJMedhAnlZ1fZQoaAZHQHHDuhPCVKRoB00iAWgIR0CSTOMNc4YKdX2UKGgGR0B0Nn1g6U7kaAdNbQFoCEdAkk2/F72L53V9lChoBkdAclEtPHktE2gHS/9oCEdAkk239itq6HV9lChoBkdAcfs+IuXeFmgHS+5oCEdAkk3G6kIomXV9lChoBkdAbHGzpHI6sGgHTR8BaAhHQJJODs6aLGd1fZQoaAZHQG/CwMhHLA5oB00nAWgIR0CSTzhN/OMVdX2UKGgGR0Bxzj4HoouxaAdL+mgIR0CST1vnr6cidX2UKGgGR0Bv11Y4hllLaAdNFQFoCEdAkk99ihFmWnV9lChoBkdAb/vh1klNUWgHTTQBaAhHQJJREqqfe1t1fZQoaAZHQHFIZcLSeAdoB01FAWgIR0CSUXJCBwuNdX2UKGgGR0ByEDSNOuaGaAdNEgFoCEdAklHkSqU/wHV9lChoBkdAcp1aUiY9gWgHTQgBaAhHQJJSo0m+j/N1fZQoaAZHQG3RWBas6q9oB002AWgIR0CSUtO/cnE3dX2UKGgGR0ByO9sHjZL7aAdNCgFoCEdAklQyJsO5KHV9lChoBkdAcwLoCuEEkmgHTTkBaAhHQJJUcmlZX+51fZQoaAZHQHGW7O7g88toB00OAWgIR0CSVVgL7XQMdX2UKGgGR0Bw7fbcoH9naAdNFAFoCEdAklV4DoyKvXV9lChoBkdAcbTyH2ys0mgHTQwBaAhHQJJVplDneSB1fZQoaAZHQHCqpoXbdrRoB00EAWgIR0CSVwNDMNc4dX2UKGgGR0BwEuAMDwH8aAdL/mgIR0CSVwWcBltkdX2UKGgGR0BwN7vmYBvKaAdNCAFoCEdAklcAv6CUYHV9lChoBkdAcxDflp48l2gHTUYBaAhHQJJXF0NjLB91fZQoaAZHQG+wtthuwX9oB02VAWgIR0CSV41HvttzdX2UKGgGR0BPG+PRzBAOaAdLxGgIR0CSV89JjDsMdX2UKGgGR0BJEPzFuNxVaAdLumgIR0CSWFuOjqOcdX2UKGgGR0Bwt9k+X7cgaAdNwgFoCEdAklkHuy/sV3V9lChoBkdAbmETV2A5JmgHTSEBaAhHQJJZY3DNyHV1fZQoaAZHQHM0CaNMoMNoB00gAWgIR0CSWa1mJ3xGdX2UKGgGR0BwyQZP2wmmaAdNFAFoCEdAklpqBiCrcXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3b583b130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3b583b1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3b583b250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3b583b2e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa3b583b370>", "forward": "<function ActorCriticPolicy.forward at 0x7fa3b583b400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa3b583b490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3b583b520>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa3b583b5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3b583b640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3b583b6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3b583b760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa3b5833380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686796064647751043, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuzQmeDnOMAWyUTQsBjAF0lEdAkPr+HnEET3V9lChoBkfAOD+K4x1xKmgHS9ZoCEdAkPvtCE6DG3V9lChoBkdAcKWj+aScLGgHTQEBaAhHQJD9BI8QqZt1fZQoaAZHQHERaQ3gk1NoB00lAWgIR0CQ/kfZmI0qdX2UKGgGR8BIJjhcZ9/jaAdNEQFoCEdAkP+wSvkilnV9lChoBkdAcIzd56dDpmgHTfgBaAhHQJEB4WN3np11fZQoaAZHQCMhTn7pFCtoB0u+aAhHQJECtDF6zE91fZQoaAZHwDNcfgaWHDdoB0vHaAhHQJEDxigCfYl1fZQoaAZHv7mo73fyf+VoB0vWaAhHQJEEsGY8dPt1fZQoaAZHQGv6o4lyBCloB01LAWgIR0CRBhdWQwK0dX2UKGgGR0BvPQ1zhgmaaAdNmQFoCEdAkQgE03wTd3V9lChoBkdAcXgpQUHpr2gHTSsBaAhHQJEJSfqX4TN1fZQoaAZHQHENSLdepn9oB01SAWgIR0CRCrktVaOhdX2UKGgGR0BtAyFyq+8HaAdNRwFoCEdAkQxWTHKfWnV9lChoBkdAbwWciGFi8WgHTTECaAhHQJEOwxsVLzx1fZQoaAZHv/47uDzyz5ZoB0vlaAhHQJEPwYqG1x91fZQoaAZHQHCenUx20RhoB02HAWgIR0CREbMUypJgdX2UKGgGR0BxOKOtGNJfaAdNXgFoCEdAkRNJtzjm0XV9lChoBkdAcJsSzgMtsmgHTR0BaAhHQJEUiEf1Yhd1fZQoaAZHQHDvDUVi4KBoB002AWgIR0CRFiVBD5TIdX2UKGgGR0Bvu/HzYmLMaAdNqQNoCEdAkRotIPK+z3V9lChoBkdAJdFBppN9IGgHS95oCEdAkRthBVuJlHV9lChoBkdAccx8YAKfF2gHTQEBaAhHQJEcfOVxCIF1fZQoaAZHQGCGqYJE6T5oB03oA2gIR0CRIQ94NZvDdX2UKGgGR0BwEgZDRc/uaAdNjAJoCEdAkSQeEM9bHXV9lChoBkdAPuRH09QoC2gHS99oCEdAkSUUbPyCnXV9lChoBkdAcBfyULUkOmgHS+xoCEdAkSYX+IdlunV9lChoBkdAcTcM1jy4F2gHTQcBaAhHQJEnPi83+/B1fZQoaAZHwA/Q2MsH0K9oB0vKaAhHQJEoHIo3Jgd1fZQoaAZHQHA9k7Sy+pRoB014AWgIR0CRKfjcEeQudX2UKGgGR0Bw6JN47ihnaAdL4GgIR0CRKvH6/IsAdX2UKGgGR0BHooT4+KTCaAdL0WgIR0CRK9hLoOhCdX2UKGgGR0Bvcph4MWoFaAdNGAFoCEdAkS1IUSIxg3V9lChoBkdAadN5N47ihmgHTUYBaAhHQJEur2tdRix1fZQoaAZHwACskIHC4z9oB0vgaAhHQJEvoyAQQMB1fZQoaAZHQG6BYKQaJhxoB01DAWgIR0CRMQcc2itadX2UKGgGR0BtAtoWYWtVaAdNZAFoCEdAkTLKWHDaXnV9lChoBkdAbCm3QUpNK2gHTQ4BaAhHQJEz8Lv1DjR1fZQoaAZHQG4UQG4ZuQ9oB00zAWgIR0CRNUJZ4fOldX2UKGgGR0Bo2ZtHhCMQaAdNBgJoCEdAkTfTc6/7BXV9lChoBkdAbVPkCmuTzWgHTRABaAhHQJE4+e9SMtN1fZQoaAZHQEvj+KjzqbBoB0v+aAhHQJE6DOPeYUp1fZQoaAZHQG8V3974SHxoB00kAWgIR0CRO4T0g8r7dX2UKGgGR0Bw7/IGQjlgaAdNKQFoCEdAkTzYSUTtcHV9lChoBkdAbYdpcHGCI2gHTVQBaAhHQJE+XZHuqm11fZQoaAZHQHCig9V3ljpoB00PAWgIR0CRP659E1EWdX2UKGgGR0BwjdRUFSsKaAdNPAFoCEdAkUFGuTzNEHV9lChoBkdAcJw7wazeGmgHTQkBaAhHQJFCbyLAHml1fZQoaAZHQHCFO40/GERoB016AmgIR0CRRW0ZWJaadX2UKGgGR0BxSZ3np0OmaAdNMAFoCEdAkUbzwMH8j3V9lChoBkfARfCuSwGGEmgHS+9oCEdAkUgL8zhxYXV9lChoBkfAGEXQ+lj3EmgHS9RoCEdAkUjsqOLiuXV9lChoBkdAb4TjZL7GemgHTRgDaAhHQJFMoIC2c8V1fZQoaAZHP+Cj4593KSxoB0vraAhHQJFNpNWU8mt1fZQoaAZHwEswALApKBdoB0v8aAhHQJFO/kDIRyx1fZQoaAZHwESAvQnhKlJoB0u7aAhHQJFPz+yZ8a51fZQoaAZHQG+AMAFPi1loB00hAWgIR0CRUTr2g398dX2UKGgGR0BsGFs3yZrpaAdN2AFoCEdAkVN/A44p+nV9lChoBkdAarQIu5BkZ2gHTVoBaAhHQJFU+zt1IRR1fZQoaAZHQHFnAwoLG71oB00CAWgIR0CRVhWXC0ngdX2UKGgGR0AeGSmqHXVcaAdL1mgIR0CRVwI+nqFAdX2UKGgGR0BAnc580DU3aAdL2mgIR0CRWCbADaGpdX2UKGgGR0Bv7PxWkrPMaAdNuwFoCEdAkVoIxxkupXV9lChoBkdAbtlAJswcpGgHTdYBaAhHQJFcD9hqj8F1fZQoaAZHQFwpxh2GIsRoB03oA2gIR0CRYJVbiZOSdX2UKGgGR0AoANQTEit8aAdLxmgIR0CRYaSPU8V6dX2UKGgGR0Bv9ZVsDW9UaAdNqQFoCEdAkWNxmXgLqnV9lChoBkfAPTUpiI+GGmgHTQ8BaAhHQJFkm+PBBRh1fZQoaAZHQG2jTJZGKAJoB002AWgIR0CRZjvPC2tudX2UKGgGR0BsqXKEFnqWaAdNRQFoCEdAkWenV09yLnV9lChoBkdAXQGxZ+x4ZGgHTegDaAhHQJFsPgaWHDd1fZQoaAZHQCCVGI9C/oJoB0vGaAhHQJFtGJemelN1fZQoaAZHQF/qyCWeHzpoB03oA2gIR0CRcbtXgccVdX2UKGgGR0BwMuQuEmICaAdNPgFoCEdAkXMbX+VC5XV9lChoBkdAcM9X4CZF5WgHTUQBaAhHQJF0t8x9G7V1fZQoaAZHwD6d0+1SflJoB0vzaAhHQJF1w7cO9WZ1fZQoaAZHQFzXTn7pFCtoB03oA2gIR0CRemFhXr+pdX2UKGgGR0BQAwfhddE9aAdN6ANoCEdAkX7+fh/AkHV9lChoBkdAcEzt03fhuWgHTSkBaAhHQJGASF/QSjB1fZQoaAZHQHCvdugpSaVoB00pAWgIR0CRgccH4XXRdX2UKGgGR0Ax9EOy3Td+aAdL12gIR0CRgraXa8HwdX2UKGgGR0Bvf+APNFBqaAdNMgFoCEdAkYQE3bVSXXV9lChoBkfAE6qFh5PdmGgHTRgBaAhHQJGFOBkI5YJ1fZQoaAZHP9jD+BH09QpoB0u9aAhHQJGGB5kbxVh1fZQoaAZHQGsZefh/Aj9oB01ZA2gIR0CRieTJQtSRdX2UKGgGR0Bvy70rbxmTaAdNGQFoCEdAkYtQ5Jbt7nV9lChoBkdAcIDAPd2xIWgHS/poCEdAkYxkBCD28XV9lChoBkdAQXh/G2kSEmgHS/1oCEdAkY14M4LkS3V9lChoBkdAcAKYcNpdr2gHTZIBaAhHQJGPOkvboKV1fZQoaAZHQGny+RHPNV1oB00XAmgIR0CRke3Roh6jdX2UKGgGR8AvN48EFGG3aAdNFQFoCEdAkZMfI8yN43V9lChoBkdAb0UMWoFV1mgHTckBaAhHQJGVZnuiN851fZQoaAZHQG0G4ptrKvFoB02DAWgIR0CRlxgCwKSgdX2UKGgGR8A5ajKPn0TUaAdL+mgIR0CRmCsSCe3AdX2UKGgGR0BsQqzZ6D5CaAdNdAFoCEdAkZoCuMdcS3V9lChoBkfAMl5N47ihnWgHS+ZoCEdAkZsBESdvsXV9lChoBkdAcRRD+zdDY2gHTQoCaAhHQJGdR0U47zV1fZQoaAZHQGloVgYxcmloB00yAWgIR0CRns/yGzrvdX2UKGgGR0BwAlwuM+/yaAdNvQFoCEdAkaC7SiM5wXV9lChoBkfASW3bj94u9WgHTSgBaAhHQJGh/qkdmxt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVHgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQcSKyS4i22YqhcKXLwrLCe4wDaW5jlIoQ7XV38Tw2V2pTx6uiyRpoE3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9ob21lL29jdGlwdXMvYW5hY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL2hvbWUvb2N0aXB1cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-43-generic-x86_64-with-glibc2.35 # 44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon May 22 13:39:36 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 256.8048911, "std_reward": 23.95972588096505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-15T04:14:56.616929"}
 
1
+ {"mean_reward": 68.6162156, "std_reward": 121.40739824665282, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T21:38:56.248369"}