Training complete!
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- recall
|
9 |
+
- precision
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-base-finetuned-marc-en
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-base-finetuned-marc-en
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8177
|
24 |
+
- Accuracy: 0.8086
|
25 |
+
- Recall: 0.5269
|
26 |
+
- Precision: 0.6436
|
27 |
+
- F1: 0.5794
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 500
|
53 |
+
- num_epochs: 15
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
60 |
+
| 0.5098 | 1.0 | 309 | 0.4999 | 0.7498 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| 0.4698 | 2.0 | 618 | 0.4456 | 0.7959 | 0.3456 | 0.6816 | 0.4586 |
|
62 |
+
| 0.3921 | 3.0 | 927 | 0.4620 | 0.8094 | 0.4561 | 0.6765 | 0.5448 |
|
63 |
+
| 0.3771 | 4.0 | 1236 | 0.4446 | 0.8172 | 0.5156 | 0.6766 | 0.5852 |
|
64 |
+
| 0.3454 | 5.0 | 1545 | 0.4567 | 0.8249 | 0.5609 | 0.6828 | 0.6159 |
|
65 |
+
| 0.2713 | 6.0 | 1854 | 0.4726 | 0.8136 | 0.6176 | 0.6301 | 0.6237 |
|
66 |
+
| 0.272 | 7.0 | 2163 | 0.5024 | 0.8108 | 0.6317 | 0.6194 | 0.6255 |
|
67 |
+
| 0.2478 | 8.0 | 2472 | 0.5689 | 0.8051 | 0.6516 | 0.6021 | 0.6259 |
|
68 |
+
| 0.1869 | 9.0 | 2781 | 0.6018 | 0.8044 | 0.7082 | 0.5910 | 0.6443 |
|
69 |
+
| 0.1575 | 10.0 | 3090 | 0.6700 | 0.8108 | 0.4986 | 0.6617 | 0.5687 |
|
70 |
+
| 0.1411 | 11.0 | 3399 | 0.7287 | 0.8157 | 0.5581 | 0.6545 | 0.6024 |
|
71 |
+
| 0.1014 | 12.0 | 3708 | 0.8177 | 0.8086 | 0.5269 | 0.6436 | 0.5794 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.41.2
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
+
- Datasets 2.20.0
|
79 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1112205008
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faa5a62aded02857cd85db9a9b59e7d3dbe8268c4965a7886dbda411ce09eaed
|
3 |
size 1112205008
|
runs/Jul04_22-06-59_069e436e70f4/events.out.tfevents.1720130838.069e436e70f4.890.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5b08ad5fc8e809c27345b567e1a07454d63378cd3dd904ec8e0e81ffdd2eda1
|
3 |
+
size 50059
|