oMateos2020
commited on
Commit
•
9cd5c33
1
Parent(s):
caae953
update model card README.md
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ model-index:
|
|
18 |
metrics:
|
19 |
- name: Rouge1
|
20 |
type: rouge
|
21 |
-
value: 32.
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -26,14 +26,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
26 |
|
27 |
# t5-small_adafactor
|
28 |
|
29 |
-
This model
|
30 |
It achieves the following results on the evaluation set:
|
31 |
-
- Loss: 2.
|
32 |
-
- Rouge1: 32.
|
33 |
-
- Rouge2: 11.
|
34 |
-
- Rougel: 26.
|
35 |
-
- Rougelsum: 26.
|
36 |
-
- Gen Len: 18.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,7 +52,7 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 0.
|
56 |
- train_batch_size: 24
|
57 |
- eval_batch_size: 24
|
58 |
- seed: 42
|
@@ -65,48 +65,48 @@ The following hyperparameters were used during training:
|
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
68 |
-
| 2.
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 2.
|
76 |
-
| 2.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
| 2.
|
80 |
-
| 2.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
-
| 2.
|
103 |
-
| 2.
|
104 |
-
| 2.
|
105 |
-
| 2.
|
106 |
-
| 2.
|
107 |
-
| 2.
|
108 |
-
| 2.
|
109 |
-
| 2.
|
110 |
|
111 |
|
112 |
### Framework versions
|
|
|
18 |
metrics:
|
19 |
- name: Rouge1
|
20 |
type: rouge
|
21 |
+
value: 32.8631
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
26 |
|
27 |
# t5-small_adafactor
|
28 |
|
29 |
+
This model is a fine-tuned version of [oMateos2020/t5-small_adafactor](https://huggingface.co/oMateos2020/t5-small_adafactor) on the xsum dataset.
|
30 |
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 2.1167
|
32 |
+
- Rouge1: 32.8631
|
33 |
+
- Rouge2: 11.658
|
34 |
+
- Rougel: 26.6192
|
35 |
+
- Rougelsum: 26.6224
|
36 |
+
- Gen Len: 18.7663
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0005
|
56 |
- train_batch_size: 24
|
57 |
- eval_batch_size: 24
|
58 |
- seed: 42
|
|
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
68 |
+
| 2.1315 | 0.02 | 200 | 2.1865 | 31.9486 | 10.9605 | 25.7418 | 25.7408 | 18.8466 |
|
69 |
+
| 2.1297 | 0.05 | 400 | 2.1965 | 31.9598 | 10.9463 | 25.784 | 25.7867 | 18.8525 |
|
70 |
+
| 2.1284 | 0.07 | 600 | 2.1981 | 32.231 | 11.1003 | 26.0155 | 26.0226 | 18.8466 |
|
71 |
+
| 2.1315 | 0.09 | 800 | 2.1873 | 31.9161 | 10.8642 | 25.7166 | 25.7273 | 18.8227 |
|
72 |
+
| 2.1212 | 0.12 | 1000 | 2.1892 | 32.4646 | 11.1852 | 26.2451 | 26.2439 | 18.8259 |
|
73 |
+
| 2.1028 | 0.14 | 1200 | 2.1978 | 32.2886 | 11.1346 | 26.0795 | 26.0827 | 18.7685 |
|
74 |
+
| 2.1221 | 0.16 | 1400 | 2.1936 | 32.2901 | 11.0821 | 25.9983 | 26.0024 | 18.7798 |
|
75 |
+
| 2.1168 | 0.19 | 1600 | 2.1922 | 32.1655 | 11.1451 | 25.986 | 25.9893 | 18.8232 |
|
76 |
+
| 2.1166 | 0.21 | 1800 | 2.1836 | 32.2611 | 11.174 | 26.0594 | 26.0688 | 18.7633 |
|
77 |
+
| 2.1053 | 0.24 | 2000 | 2.1929 | 32.3321 | 11.213 | 26.1859 | 26.1903 | 18.7758 |
|
78 |
+
| 2.1126 | 0.26 | 2200 | 2.1811 | 32.2078 | 11.1792 | 26.0776 | 26.0817 | 18.8197 |
|
79 |
+
| 2.1038 | 0.28 | 2400 | 2.1836 | 32.2799 | 11.2511 | 26.1191 | 26.1251 | 18.7884 |
|
80 |
+
| 2.1181 | 0.31 | 2600 | 2.1805 | 32.1197 | 11.1586 | 26.0441 | 26.0441 | 18.8045 |
|
81 |
+
| 2.1217 | 0.33 | 2800 | 2.1806 | 32.3051 | 11.2638 | 26.1319 | 26.1386 | 18.7886 |
|
82 |
+
| 2.116 | 0.35 | 3000 | 2.1741 | 32.2799 | 11.1887 | 26.1224 | 26.1363 | 18.7769 |
|
83 |
+
| 2.1118 | 0.38 | 3200 | 2.1767 | 32.387 | 11.2053 | 26.077 | 26.0845 | 18.8407 |
|
84 |
+
| 2.1164 | 0.4 | 3400 | 2.1743 | 32.5008 | 11.4021 | 26.3291 | 26.3297 | 18.7731 |
|
85 |
+
| 2.1068 | 0.42 | 3600 | 2.1673 | 32.2347 | 11.1676 | 26.0657 | 26.0662 | 18.817 |
|
86 |
+
| 2.1276 | 0.45 | 3800 | 2.1664 | 32.2434 | 11.2862 | 26.094 | 26.0994 | 18.7713 |
|
87 |
+
| 2.1313 | 0.47 | 4000 | 2.1636 | 32.694 | 11.3724 | 26.4071 | 26.4008 | 18.7709 |
|
88 |
+
| 2.1229 | 0.49 | 4200 | 2.1633 | 32.456 | 11.4057 | 26.2733 | 26.2689 | 18.7586 |
|
89 |
+
| 2.129 | 0.52 | 4400 | 2.1641 | 32.309 | 11.2133 | 26.1062 | 26.1121 | 18.7729 |
|
90 |
+
| 2.1425 | 0.54 | 4600 | 2.1577 | 32.5879 | 11.4001 | 26.3045 | 26.3078 | 18.8104 |
|
91 |
+
| 2.1536 | 0.56 | 4800 | 2.1507 | 32.5152 | 11.4035 | 26.3054 | 26.3116 | 18.7941 |
|
92 |
+
| 2.148 | 0.59 | 5000 | 2.1503 | 32.8088 | 11.5641 | 26.5346 | 26.5311 | 18.7602 |
|
93 |
+
| 2.1541 | 0.61 | 5200 | 2.1491 | 32.8185 | 11.5816 | 26.5261 | 26.527 | 18.7654 |
|
94 |
+
| 2.155 | 0.64 | 5400 | 2.1466 | 32.7229 | 11.5339 | 26.4363 | 26.442 | 18.8404 |
|
95 |
+
| 2.1579 | 0.66 | 5600 | 2.1435 | 32.884 | 11.6042 | 26.5862 | 26.5891 | 18.7713 |
|
96 |
+
| 2.1601 | 0.68 | 5800 | 2.1393 | 32.8027 | 11.5328 | 26.4521 | 26.4567 | 18.7904 |
|
97 |
+
| 2.1765 | 0.71 | 6000 | 2.1393 | 32.8059 | 11.5751 | 26.5499 | 26.5551 | 18.7768 |
|
98 |
+
| 2.2176 | 0.73 | 6200 | 2.1345 | 33.0734 | 11.8056 | 26.7546 | 26.7607 | 18.7756 |
|
99 |
+
| 2.2126 | 0.75 | 6400 | 2.1328 | 32.7478 | 11.5925 | 26.5333 | 26.5359 | 18.7819 |
|
100 |
+
| 2.1916 | 0.78 | 6600 | 2.1298 | 32.658 | 11.491 | 26.379 | 26.3869 | 18.8101 |
|
101 |
+
| 2.2162 | 0.8 | 6800 | 2.1297 | 32.7843 | 11.5629 | 26.4736 | 26.4728 | 18.8187 |
|
102 |
+
| 2.2358 | 0.82 | 7000 | 2.1287 | 32.9181 | 11.6378 | 26.5966 | 26.5987 | 18.8039 |
|
103 |
+
| 2.2371 | 0.85 | 7200 | 2.1265 | 32.8413 | 11.674 | 26.5905 | 26.5831 | 18.7962 |
|
104 |
+
| 2.256 | 0.87 | 7400 | 2.1245 | 32.7412 | 11.5627 | 26.4976 | 26.503 | 18.7728 |
|
105 |
+
| 2.2566 | 0.89 | 7600 | 2.1220 | 32.8165 | 11.6069 | 26.5301 | 26.5295 | 18.7871 |
|
106 |
+
| 2.2954 | 0.92 | 7800 | 2.1197 | 32.7399 | 11.5417 | 26.4914 | 26.4938 | 18.7752 |
|
107 |
+
| 2.2766 | 0.94 | 8000 | 2.1187 | 32.853 | 11.6411 | 26.5909 | 26.5938 | 18.7852 |
|
108 |
+
| 2.3273 | 0.96 | 8200 | 2.1169 | 32.9376 | 11.709 | 26.6665 | 26.6672 | 18.7734 |
|
109 |
+
| 2.3182 | 0.99 | 8400 | 2.1167 | 32.8631 | 11.658 | 26.6192 | 26.6224 | 18.7663 |
|
110 |
|
111 |
|
112 |
### Framework versions
|