RITA_l / rita_modeling.py
nz's picture
Create rita_modeling.py
af3f5e2
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .rita_configuration import RITAConfig
import torch.nn.functional as F
logger = logging.get_logger(__name__)
@torch.jit.script
def RITA_gelu(hidden_states):
return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))
class RITAGELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states):
return RITA_gelu(hidden_states)
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=x1.ndim - 1)
class RotaryEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
assert config.d_model % config.num_heads == 0
self.d_model = config.d_model
self.num_heads = config.num_heads
self.max_seq_len = config.max_seq_len
head_dim = self.d_model // self.num_heads
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached, self.sin_cached
def apply_rotary_pos_emb(self, q, k, cos, sin):
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class SelfAttention(nn.Module):
"""Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
modified to use rotary embeddings.
Parameters
----------
d_model: int,
total dimension of the model.
num_heads: int,
number of parallel attention heads.
num_layers: int,
number of layers in the model, used for the Megatron-like init.
rotaty_embedding: Optional[Block], default None,
a RotaryEmbedding Block to add positionnal information in Queries and Keys
dropout: float, default 0.1,
amount of dropout on the attention weights.
sigma: float, default 0.02,
standard deviation used for the init.
trainable: bool, default True,
if False, the Module parameters will be hidden from the optimizer.
"""
def __init__(
self,
d_model: int,
num_heads: int,
num_layers: int,
rotary_embedding= None,
dropout: float = 0.1,
sigma=0.02,
use_cache: bool = False,
bias=True,
):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = self.d_model // self.num_heads
self.num_layers = num_layers
self.dropout = dropout
self.sigma = sigma
self.bias = bias
# key, query, value projections for all heads
self.key = nn.Linear(d_model, d_model, bias=bias)
self.query = nn.Linear(d_model, d_model, bias=bias)
self.value = nn.Linear(d_model, d_model, bias=bias)
# regularization
self.attn_drop = nn.Dropout(dropout)
self.resid_drop = nn.Dropout(dropout)
# output projection
self.proj = nn.Linear(d_model, d_model, bias=bias)
self.rotary_embedding = rotary_embedding
self.layer_id = None # will be set by the Transformer itself
self.use_cache = use_cache
self.qkv = None
self.bias = bias
def forward(
self,
x,
attn_mask: Optional[torch.BoolTensor] = None,
padding_mask: Optional[torch.BoolTensor] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
N, L, D = x.size() # Batch_size, Context_size, d_model
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = (
self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
q = (
self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
v = (
self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
) # (N, nh, L, hs)
if self.rotary_embedding is not None:
cos, sin = self.rotary_embedding(x)
q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
if attn_mask is not None:
att[:,:,-L:, -L: ].masked_fill_(attn_mask.view(1, 1, L, L), float("-inf"))
att = (
att.transpose(0, 2)
.masked_fill(padding_mask.view(1, 1, N, L), float("-inf"))
.transpose(0, 2)
if padding_mask is not None
else att
)
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
y = (
y.transpose(1, 2).contiguous().view(N, L, D)
) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class DecoderLayer(nn.Module):
"""Transformer block containing the self-attention module and the feedfoward module."""
def __init__(
self, config
):
super().__init__()
self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
self.attn_norm = nn.LayerNorm(config.d_model)
self.attn_dropout = nn.Dropout(config.dropout)
self.mlp = nn.Sequential(
nn.Linear(config.d_model, config.d_feedforward, bias=True),
RITAGELU(),
nn.Linear(config.d_feedforward, config.d_model, bias=True),
)
self.mlp_norm = nn.LayerNorm(config.d_model)
self.mlp_dropout = nn.Dropout(config.dropout)
def forward(
self,
x: torch.FloatTensor,
attn_mask: torch.BoolTensor,
padding_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
y = self.attn_norm(x)
y = self.self_attention(y, attn_mask=attn_mask, padding_mask=padding_mask)
x = x + self.attn_dropout(y)
y = self.mlp_norm(x)
y = self.mlp(y)
x = x + self.mlp_dropout(y)
return x
class RITAModel(PreTrainedModel):
config_class = RITAConfig
def __init__(
self,
config
):
super().__init__(config)
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
self.final_norm = nn.LayerNorm(config.d_model)
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
def forward(self, input_ids, attn_mask=None, padding_mask=None, return_hidden=False) -> torch.FloatTensor:
x = self.embedding(input_ids) # N x L x D
if attn_mask == None:
attn_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
for layer in self.layers:
x = layer(x, attn_mask=attn_mask, padding_mask=padding_mask)
x = self.final_norm(x) # N x L x D
if return_hidden:
return x
else:
return self.projector(x)
#Some common HF functions.
def get_input_embeddings(self):
return self.embedding
def set_input_embeddings(self, new_embeddings):
self.embedding = new_embeddings
def get_output_embeddings(self):
return self.projector
def set_output_embeddings(self, new_projector):
self.projector = new_projector